Störungen integrabler Systeme
65px|Kein GFDL | Der Artikel Störungen integrabler Systeme basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 5.Kapitels (Abschnitt 3) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=3}} Kategorie:Mechanik __SHOWFACTBOX__
ein integrables, quasiperiodisches, autonomes Hamiltonsches System mit der Wirkungsvariablen
und der Winkelvariablen
, Hamiltonfunktion
Betrachten wir nun eine kleine Störung der Stärke
In diesem Fall ist
nicht mehr zyklisch.
ist also keine Bewegungskonstante mehr !
Beispiel:
Himmelsmechanik, beispielsweise restringiertes 3- Körper- Problem
System: Sonne, Erde, Mond
- integrables 2- Körper- Problem mit 2 größeren Massen ( annähernd Kreisbahn) und einer kleinen Masse m3 als Störung
- Frage: Ist die quasiperiodische Bewegung über lange Zeiten stabil ? Das heißt: Verändert die Störung die Struktur der Bewegungsmannigfaltigkeit nur wenig ?
Also:
Durch eine dritte Masse m3 ist eine Störung gegeben. Die Bewegung konnte auch vorher ( bei irrationalem Verhältnis der Umlaufszeiten oder Frequenzen) schon nur quasiperiodisch sein.
Ist die quasiperiodische Lösung unter Anwesenheit der dritten Masse jedoch noch stabil ?
- Dies ist bis heute ungelöst... Es gibt jedoch Hinweise auf chaotische Bewegungen, beispielsweise chaotische Bewegungen des Planeten Pluto !
Teilantwort liefert die KAM_ Theorie ( Kolmogorov, Arnold, Moser, 1954, 1963, 1967)
- Stabilitätsaussagen
Voraussetzung:
Die Frequenzen des integrablen Systems
sind rational unabhängig, also:
Dann überdeckt jede Bahn für festes
den Torus
dicht ohne sich jedoch zu schließen: Die Bewegung ist ergodisch.
ERGODISCHE Bewegung ( nichtresonanter Torus)
KAM- Theorem
Sind in einem integablen Hamiltonschen System Ho die Frequenzen genügend irrational:, das heißt
So hat das gestörte System
für kleine
überwiegend ebenfalls quasiperiodische Lösungen und die eisten nichtresonanten Tori von
werden nur wenig deformiert, aber nicht zerstört.
Anwendung:
Das restringierte 3-Körper-Problem ist KAM- Stabil. Aber: keine Aussage über eine Langzeitstabilität unseres Planetensystems !
Praktische Verfahren zur Berechnung der gestörten Lösungen:
- störungstheoretische Entwicklung in
- Mittelung über die Störungen