Wirkungs- und Winkelvariable
65px|Kein GFDL | Der Artikel Wirkungs- und Winkelvariable basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 5.Kapitels (Abschnitt 2) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=2}} Kategorie:Mechanik __SHOWFACTBOX__
Nun betrachten wir eine Modifikation des Hamilton- Jacobi- Verfahrens. Dabei geht es speziell um periodische Systeme. Das Ganze soll an einem Beispiel skizziert werden und erst dann Verallgemeinerung finden.
Klassifikation von periodischem Verhalten:
- geschlossene Phasenraumkurvn welcher Art auch immer sind Librationen. Diese sind beispielsweise Schwingungen.
- dabei gilt:
- periodische ( hinsichtlich des Ortes), aber nicht geschlossene Phasenraumkurven, also Phasenraumkurven, die selbst entlang des Ortes im Impuls schwingen ( dies sind nicht Schwingungen im ortsraum !) sind Rotationen. Die Phasenbahnen sind offen und es gilt:
- Beispiel für eine Rotation ist die Drehung einer Achse:
Beispiel: Das mathematische Pendel ( mit beliebig großen Auslenkungen)
f= 1, verallgemeinerte Koordinate: Winkel ., s= l
verallgemeinerter kanonischer Impuls:
Es folgen die Hamiltonschen Gleichungen:
- Integral ( Enrgieerhaltung): Phasenbahn
Für kleine Winkel gilt die bekannte Kleinwinkelnäherung:
-> Ellipsen, wie vom harmon. Oszi bekannt.
Gleichgewichtslagen: Fixpunkte:
Rotation: überschlagendes Pendel: unbeschränkt
Für E=2mgl haben wir den Spezialfall einer Kriechbahn ( Separatrix zwischen a) und b):
Übergang zu neuen kanonischen Variablen ( f=1)
I(E) ist als Wirkungsvariable zu verstehen, als die Fläche, die von einer notwendigerweise geschlossenen Bahn
zur Energie E im Phasenraum eingeschlossen ist. ( = Phasenintegral).
ist die Winkelvariable, auf Periode 1 normiert.
Gelegentlich findet sich:
In diesem Fall ist
auf
normiert.
gesucht ist die zugehörige kanonische Transformation:
Mit der neuen Hamiltonfunktion:
Dies ist die Umkehrfunktion von I(E), existiert genau dann, wenn
.
Da zyklisch ist muss I konstant sein.
Die Hamiltonsche Bewegungsgleichung für lautet:
ist bei Normierung auf
zu verstehen.
Mit der Lösung jedoch ist für jedes E(I) die frequenz berechnet.
Das Phasenraumportrait ist der folgenden gestalt:
Beispiel: eindimensionaler Oszillator
Phasenbahn:
Umkehrpunkte:
Wirkungsvariable:
Transformierte Hamiltonfunktion:
Die zeitliche Änderung des Winkels, also die Frequenz des harmonischen Oszillators ist völlig unabhängig von E(I)
Nebenbemerkungen:
1. hat die Dimension Zeit* Energie, also Wirkung
ist die Winkelvariable, die zur periodischen Bewegung im Phasenraum ! gehört und hat überhaupt nichts mit dem Winkel im ortsraum ( des Pendels Phi) zu tun
Allgemein: Perdiodische Bewegungen werden immer durch eine Winkelvariable parametrisiert.
- die periodische Bewegung wird damit auf die 1-Sphäre S1 ( Kreis mit Radius 1) abgebildet.
Verallgemeinerung auf beliebiges f:
Eine Bewegung heißt periodisch bzw. quasiperiodisch, falls die Projektion der Phasenbahn (Trajektorie) auf jede (pj,qj)- Ebene periodisch mit Frequenz
ist. Jede Projektion also für gleiche Koordinaten in Ort und Impuls !
Falls: rational ist, so ist die Bahn geschlossen, also einfach periodisch.
Falls: irrational -> offene Bahn ( quasiperiodisch).
Parametrisierung erfolgt durch die Winkelvariable zu
Abbildung auf (f mal S1- Sphären- Räume), Abbildung auf den sogenannte f-Torus
Beispiel: 2Torus:
Ist das Frequenzverhältnis irrational, so wirkt der Torus nur als Phasenraumattraktor. Die Bahn füllt den gesamten Torus dicht aus !
Satz über integrable Systeme
Einautonomes System ( Hamiltonsch) habe f unabhängige Integrale der Bewegung
Dann gilt:
- die durch
gegebene Hyperfläche des Phasenraums ( falls kompakt und beschränkt und abgeschlossen) läßt sich diffeomorph auf einen f-dimensionalen Torus abbilden.
- die Allgemeine Bewegung auf
ist quasiperiodisch: , ist zugehörige Winkelvariable, i=1,...,f
- das System ist INTEGRABEL, das heißt, die Hamiltonschen Bewegungsgleichungen lassen sich vollständig und global integrieren.
Beispiele: 2- Körper- Problem mit Zentralkraft, gekoppelte harmonische Oszillatoren
Gegenbeispiel: 3- Körperproblem mit Zentralkraft (f=9, nur 6 unabhängige Integrale der Bewegung:
Nebenbemerkung:
Wegen und zyklisch erfüllen die 3 Drehimpulskomponenten nicht alle die Bedingung obgleich gilt: .
Wirkunsgvariable:
Für ein separables System gilt:
Die Umkehrung liefert die Energie:
Die Hamiltongleichungen lauten:
Fazit:
Mit der Wirkungs- und Winkelvariablen können die Frequenzen periodischer Bewegungen bestimmt werden, ohne die vollständige Lösung angeben zu müssen.