Poisson- Klammern
65px|Kein GFDL | Der Artikel Poisson- Klammern basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 6) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=6}} Kategorie:Mechanik __SHOWFACTBOX__
Jede Observable läßt sich in der klassischen Mechanik als Funktion von Ort, Impuls und Zeit darstellen:
Die zeitliche Änderung längs der Bahn
im Phasenraum
Definition:
Für zwei beliebige Observablen
heißt
Poisson- Klammer
Well put, sir, well put. I'll certinlay make note of that.
6HHyAq <a href="http://zhtmswcnthxb.com/">zhtmswcnthxb</a>
Bezug zur Quantenmechanik
Ein Übergang zur Quantenmechanik ist möglich:
Von der klassischen Variablen
zum qm. Operator:
- Failed to parse (syntax error): {\displaystyle g:H→H}
mit dem Hilbertraum H
Von der Poissonklammer:
zum Kommutator
Aus den fundamentalen Poisson- Klammern folgen die kanonischen Vertauschiungsrelationen:
Die Hamiltonfunktion H(q,p,t) geht über zum Hamilton- Operator
Die Bewegungsgleichungen:
Wobei auch nur der Zusammenhang zwischen Poisson- Klammer und Kommutator recycled wurde.
Da in diesem Bild die Operatoren zeitabhängig sind haben wir es mit der Heisenbergschen bewegungsgleichung zu tun. Im Schrödingerbild ist der Operator zeitunabhängig und die Schrödingergleichung gibt eine Bewegungsgleichung für die Zustände an.