Symplektische Struktur des Phasenraums

From testwiki
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=4}} Kategorie:Mechanik __SHOWFACTBOX__



Da die kanonischen Transformationen generalisierte Koordinaten und Impulse ineinander transformieren können, sollten q und p nicht gegeneinander ausgezeichnet sein. Um diese Symmetrie des kanonischen Formalismus auszuzeichnen, wird eine neue Notation eingeführt.

Sei zunächst f= 1


x¯:=(qp)

ist Vektor im Phasenraum


H,x:=(HqHp)

ist Ableitungsvektor


J:=(0110)

ist Metrik im Phasenraum (metrischer Tensor)

In diesem Fall lassen sich die kanonischen Gleichungen vereinfacht schreiben als:


x¯˙:=JH,xJx¯˙=H,xq˙=Hp,p˙=Hq


Leicht läßt sich zeigen:


J2=1J1=JT=J


Verallgemeinerung auf mehr Freiheitsgrade

x¯:=(q1...qfp1...pf)H¯x:=(Hq1...HqfHp1...Hpf)J:=(01f1f0)


Die kanonischen Gleichungen lauten


x¯˙:=JHxJx¯˙=Hx


Beispiel ist ein lineares autonomes System in einer Dimension, also der verallgemeinerte eindimensionale harmonische Oszillator:


x¯˙:=Ax¯=JHx


Diese Gleichung ist abzuleiten aus der Hamiltonfunktion:


H=12(aq2+2bqp+cp2)z.B.a=ω02,b=0,c=1


x¯˙:=(0110)(HqHp)=bq+cpaqbp


Somit ergibt sich eine Einschränkung an die Matrix A:


A=(bcab)tr(A)=0


Dies gilt für Hamiltonsche Systeme! (Einschränkung an die Dynamik im Phasenraum)

Kanonische Transformationen in kompakter Notation

Aus den 4 Äquivalenten Formen der Erzeugenden für kanonische Transformationen folgt:

M1(q¯,Q¯,t):pj=M1qjPj=M1QjpjQk=2M1Qkqj=Pkqj


M2(q¯,P¯,t)=M1(q¯,Q¯,t)j=1fM1QjQjpj=M2qjQj=M2PjpjPk=2M2Pkqj=Qkqj


M3(p¯,Q¯,t)=M1(q¯,Q¯,t)j=1fM1qjqjqj=M3pjPj=M3QjqjQk=2M3Qkpj=Pkpj


M4(p¯,P¯,t)=M1(q¯,Q¯,t)j=1f(M1QjQj+M1qjqj)qj=M4pjQj=M1Pj=qjqjPk=2M1Pkpj=Qkpj


Dabei sind:


x¯:=(q1...qfp1...pf)y¯:=(Q1...QfP1...Pf)


Mαβ=xαyβ(M1)αβ:=yαxβα,β=1,...,2f


Beweis:

γ=12fMαγ(M1)γβ=γ=12fxαyγyγxβ=xαxβ=δαβ


Damit läßt sich eine einheitliche Schreibweise finden für die Relationen aller Erzeugenden:


Mαβ=μ,ν=12fJαμJβν(M1)μν


You’re a real deep thikenr. Thanks for sharing.

Definition:

Die Menge der Matrizen M (kanonische Trafo) mit


MTJM=J

bildet die reelle symplektische Gruppe S über

R2f.


Dies ist die Symmetriegruppe der symplektischen Struktur.

Furrealz? That's marvelosluy good to know.