Der harmonische Oszillator

From testwiki
Revision as of 17:52, 24 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „{{Scripthinweis|Quantenmechanik|2|4}} Anwendungsbeispiel der abstrakten Darstellung im Hilbertraum: der eindimensionale harmonische Oszillator <math>\hat{H}=\fr…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=4}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Anwendungsbeispiel der abstrakten Darstellung im Hilbertraum: der eindimensionale harmonische Oszillator

H^=p^22m+mω22x^2

Als Hamiltonoperator

Es gilt die Vertauschungsrelation

[p^,x^]=i

Besser:

[p^l,x^k]=iδkl

Definition eines Operators, des Leiteroperators ( nicht hermitesch !!)

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} & a:=\frac{1}{\sqrt{2m\hbar \omega }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}-i\sqrt{\frac{m\omega }{2\hbar }}\hat{x} \\ & {{a}^{+}}:=\frac{1}{\sqrt{2m\hbar \omega }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}+i\sqrt{\frac{m\omega }{2\hbar }}\hat{x} \\ & \Rightarrow a{{a}^{+}}=\frac{1}{2m\hbar \omega }{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}}^{2}}+\frac{m\omega }{2\hbar }{{{\hat{x}}}^{2}}+\frac{i}{2\hbar }\left( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}\hat{x}-\hat{x}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p} \right)=\frac{1}{2m\hbar \omega }{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}}^{2}}+\frac{m\omega }{2\hbar }{{{\hat{x}}}^{2}}+\frac{i}{2\hbar }\left[ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p},\hat{x} \right] \\ & \left[ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p},\hat{x} \right]=\frac{\hbar }{i} \\ & \Rightarrow a{{a}^{+}}=\frac{1}{2m\hbar \omega }{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}}^{2}}+\frac{m\omega }{2\hbar }{{{\hat{x}}}^{2}}+\frac{1}{2}=\frac{1}{\hbar \omega }\hat{H}+\frac{1}{2} \\ \end{align}}

Merke:

Ausgangspunkt unserer ganzen Überlegungen ist eine Definition, nämlich die Definitiond er Leiteroperatoren:

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} & a:=\frac{1}{\sqrt{2m\hbar \omega }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}-i\sqrt{\frac{m\omega }{2\hbar }}\hat{x} \\ & {{a}^{+}}:=\frac{1}{\sqrt{2m\hbar \omega }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}+i\sqrt{\frac{m\omega }{2\hbar }}\hat{x} \\ \end{align}}

Ebenso:

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} & {{a}^{+}}a=\frac{1}{2m\hbar \omega }{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}}^{2}}+\frac{m\omega }{2\hbar }{{{\hat{x}}}^{2}}-\frac{i}{2\hbar }\left( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}\hat{x}-\hat{x}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p} \right)=\frac{1}{2m\hbar \omega }{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}}^{2}}+\frac{m\omega }{2\hbar }{{{\hat{x}}}^{2}}-\frac{i}{2\hbar }\left[ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p},\hat{x} \right] \\ & \left[ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p},\hat{x} \right]=\frac{\hbar }{i} \\ & \Rightarrow {{a}^{+}}a=\frac{1}{2m\hbar \omega }{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}}^{2}}+\frac{m\omega }{2\hbar }{{{\hat{x}}}^{2}}-\frac{1}{2}=\frac{1}{\hbar \omega }\hat{H}-\frac{1}{2} \\ & \\ & \Rightarrow \left[ a,{{a}^{+}} \right]=1 \\ & a{{a}^{+}}+{{a}^{+}}a=\frac{2}{\hbar \omega }\hat{H} \\ \end{align}}

Somit:

H^=12ω(aa++a+a)=12ω(a+a+1+a+a)=ω(a+a+12)

Merke dazu:

Failed to parse (syntax error): {\displaystyle a{{a}^{+}}=\frac{1}{2m\hbar \omega }{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}^{2}}+\frac{m\omega }{2\hbar }{{\hat{x}}^{2}}+\frac{i}{2\hbar }\left( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}\hat{x}-\hat{x}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p} \right)=\frac{1}{2m\hbar \omega }{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}}^{2}}+\frac{m\omega }{2\hbar }{{\hat{x}}^{2}}+\frac{i}{2\hbar }\left[ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p},\hat{x} \right]}

Somit:

Failed to parse (syntax error): {\displaystyle \frac{i}{2\hbar }\left[ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p},\hat{x} \right]}

als verantwortlicher Term für die Grundzustandsenergie:

E0=12ω

Also: Die Grundzustandsenergie folgt direkt aus der Unschärfe !

Weitere Vertauschungsrelationen:

(aa+)a=1ωH^a+12a=a(a+a)=1ωaH^12a[a,H^]=aH^H^a=ωa

Ebenso die adjungierteVersion:

[a+,H^]=(aH^)´*(H^a)*=ωa+

Verallgemeinerung

Beweis: Vollständige Induktion:

n=1 [a,(a+)1]=1

Sei[a,(a+)n]=n(a+)n1=a+(a+)n

fürn1

[a,(a+)n+1]=a(a+)n+1(a+)n+1a=a(a+)n+1(a+)naa++(a+)naa+(a+)n+1a[a,(a+)n+1]=[a,(a+)n]a++(a+)n[a,a+][a,(a+)n]=n(a+)n1[a,(a+)n+1]=n(a+)n1a++(a+)n=(n+1)(a+)n

Adjungierte Version:

[a+,an]=n(a)n1=a(a)n

Somit gilt für beliebige, in Potenzreihen von Auf- oder Absteiger entwickelbare Funktionen f:

[a,f(a+)]=a+f(a+)[a+,f(a)]=af(a)

Eigenwerte von H

Sei |E

ein normierter Eigenvektor von H^

mit H^|E=E|E

So gilt:

ωE|a+a|E=E|H^ω2|E=E|Eω2|E=Eω2E|a+a|E=Ψ||Ψ0

Das bedeutet:

Eω2Eω2a|E=0

Das Energiespektrum ist also nach unten beschränkt und gleichzeitig vernichtet der Absteigeoperator den Zustand mit der niedrigsten Energie

Behauptung

a|E

ist Eigenzustand zu H^

mit dem Eigenwert Eω

Also: H^a|E=(Eω)a|E

Beweis:

H^a|E=(aH^ω)a|E=a(H^ω)|E=a(Eω)|E=(Eω)a|E

Dabei gilt

H^a|E=(aH^ω)a|E

wegen

[a,H^]=ωa

Durch wiederholte Anwendung könnte man Eigenzustände |E0

mit beliebig tiefer Energie erzeugen, wenn nicht Eω2

gelten würde.

Daher existiert ein mN

so dass am|E=0

aber am1|E0

Also definiere man einen Grundzustand:

|0:=am1|E

Vorsicht ! Dieser ist gerade nicht ein NULL- KET,

sondern: Der Zustand zur Quantenzahl n=0

H^|0=ω(a+a+12)|0=12ω|0

wegen

a|0=am|E=0

Also:

E0=ω2a|0=am|E=0

Weiter:

H^a+|0=(a+H+ωa+)|0=a+(H^+ω)|0=a+(ω2+ω)|0=3ω2a+|0

Der erste Schritt gilt wieder wegen der Vertauschungsrelation

[a+,H^]=ωa+

Das heißt nun aber, dass a+|0

der Eigenzustand von H^

zum Eigenwert 3ω2

ist.

Vollständige Induktion

H^(a+)n|0=ω(n+12)(a+)n|0

Dann:

H^(a+)n+1|0=(a+H^+ωa+)(a+)n|0=a+(H^+ω)(a+)n|0(H^+ω)(a+)n|0=(ω(n+12)+ω)(a+)n|0H^(a+)n+1|0=a+(H^+ω)(a+)n|0=ω(n+1+12)(a+)n+1|0

Normierung der Eigenzustände

(a+)n|0

Der Grundzustand sei normiert:

0|0=1

Dann folgt für den n-ten angeregten Zustand:

|n=αn(a+)n|0

mit Normierungsfaktor αn

1=!=n|n=|αn|20|an(a+)n|00|an(a+)n|0=0|an1((a+)na+[a,(a+)n])|0

wegen [a,(a+)n]=n(a+)n1

Somit: 0|an(a+)n|0=0|an1((a+)na+[a,(a+)n])|0=0|an1(a+)na|0+n0|an1(a+)n1|00|an1(a+)na|0=0n0|an1(a+)n1a|0=n(n1)0|an2(a+)n2a|0...

Dieser Algorithmus wird n- mal angewendet:

0|an(a+)na|0=n!0||0=n!

Somit folgt bis auf einen willkürlichen Phasenfaktor: |n=1n!(a+)n|0 für NORMIERTE EIGENZUSTÄNDE des harmonischen Oszillators und diese gehören zu den Energiewerten En=ω(n+12)H^|n=En|n

Quantensprechweise: EnEn1=ω(n+12)ω(n1+12)=ω ist die Energie eines "Schwingungsquants". Man sagt auch, es IST ein Schwingungsquant ! |n ist ein Zustand mit n Schwingungsquanten ( Phononen) der Frequenz ω

a ist der Vernichtungsoperator für Schwingungsquanten a+ der Erzeugungsoperator für Schwingungsquanten a|n=1n!a(a+)n|0=1n!{(a+)na+[a,(a+)n]}|0=1n!n(a+)n1|0=n|n1a+|n=1n!(a+)n+1|0=n+1|n+1

Teilchenzahloperator

N:=a+aN|n=a+a|n=a+n|n1=nn|n=n|n

In Übereinstimmung mit H^|n=ω(a+a+12)|n=ω(n+12)|n

Veranschaulichung

Die folgende Grafik demonstriert die äquidistanten Energieniveaus im Oszillatorpotenzial. Dabei werden die stationären Zustände |ϕ(x)|2 dargestellt, also als Aufenthaltswahrscheinlichkeit

Die Bewegung eines Wellenpaketes im Harmonischen Oszillator, also im x²- Potenzial für σ=0,5σ02 , also mit einem σ<σ02 , wobei σ02 das σ des Grundzustands darstellt, sieht folgendermaßen aus: Es ist das σ=σ02 für die kohärenten / Glauber - Zustände Das heißt: Die Standardabweichung des quantenmechanischen Oszillators ist kleiner als bei Berechnung über Glauberzustände ( kohärente Zustände)

Zusammenhang mit der Ortsdarstellung

Bisher haben wir vollständig darstellungsfrei gerechnet ! Nun soll die darstellungsfreie Rechnung durch Operatoren in expliziten Darstellungen ersetzt werden ! Mit ϕn(x)=x|n und Failed to parse (syntax error): {\displaystyle a:=\frac{1}{\sqrt{2m\hbar \omega }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}-i\sqrt{\frac{m\omega }{2\hbar }}\hat{x}} gilt: Failed to parse (syntax error): {\displaystyle a\left( x,\frac{\hbar }{i}\frac{d}{dx} \right){{\phi }_{n}}(x)=\left( \frac{1}{\sqrt{2m\hbar \omega }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}-i\sqrt{\frac{m\omega }{2\hbar }}\hat{x} \right){{\phi }_{n}}(x)}

ξ^:=mω2x^ξ:=mω2x

a(x,iddx)ϕn(x)=1i2(ξ^+ddξ)ϕn(ξ)

Dabei gilt: ξ^:=mω2x^ξ:=mω2x sind dimensionslose Größen, die sogenannten Normalkoordinaten ! In a(x,iddx)ϕn(x)=1i2(ξ^+ddξ)ϕn(ξ) wird über (ξ^+ddξ) der Impulsanteil durch die Ortsdarstellung des Impulsoperators ersetzt. Den Grundzustand gewinnt man leicht aus dem Ansatz a|ϕ0=0 mit |ϕ0:=|0

Wegen a|0=0 folgt für n=0: 0=(ξ^+ddξ)ϕ0(ξ)dϕ0ϕ0=ξdξ

Somit ergibt sich: ϕ0(ξ)=A0e(ξ22)A0=(mωπ)14

Wobei sich A0 aus der Normierung ergibt. Der Grundzustand im Oszillator ist also ein Gaußzustand, eine normierte Gaußglocke mit einer Halbwertsbreite, die in ξ enthalten ist. Für die angeregten Zustände gilt: ϕ1(ξ)=a+ϕ0(ξ)=1i2(ξddξ)ϕ0(ξ)=1i2e(ξ22)ddξ(e(ξ22)ϕ0(ξ))ϕ1(ξ)=1i2e(ξ22)ddξ(A0e(ξ2))A0=(mωπ)14

Die angeregten Zustände werden also einfach durch Anwendung des Aufsteigeoperators aus dem Grundzustand erzeugt ! Für den n-ten angeregten Zustand ( Induktion !) damit: ϕn(ξ)=(a+)nn!ϕ0(ξ)=1in2nn!(ξddξ)nϕ0(ξ)=1inA02nn!(1)ne(ξ22)dn(dξ)neξ2A02nn!:=AnA0=(mωπ)14(1)ne(ξ22)dn(dξ)neξ2:=Hn(ξ)eξ22

Dabei kann 1in als Phasenfaktor ( für die Wahrscheinlichkeit irrelevant) weggelassen werden und Hn bezeichnet die sogenannten Hermiteschen Polynome vom Grad n. Die Eigenzustände des harmonischen Oszillators beinhalten also die Hermité- Polynome ϕn(ξ)=1inA02nn!(1)ne(ξ22)dn(dξ)neξ2ϕn(ξ)=(mωπ)14(2)nn!Hn(ξ)eξ22

Explizit lauten diese Hermiteschen Polynome ( wie aus obiger Relation berechnet werden kann): H0(ξ)=1H1(ξ)=2ξH2(ξ)=4ξ22H3(ξ)=2ξ312ξ

Letztendlich bezeichnet (1)n die Parität von ϕn

Die Wellenfunktionen im Oszillatorpotenzial ( die Wurzeln der Wahrscheinlichkeiten) werden folgendermaßen schematisch dargestellt:


Für das Wasserstoffatom ergeben sich als Wellenfunktion die Kugelflächenfunktionen Ylm(ϑ,ϕ) . Bei Polardiagrammen gibt dabei der Betrag des Radiusvektors, der das Diagramm zeichnet r=|Ylm(ϑ,ϕ)|2 das Betragsquadrat der Kugelflächenfunktion an. Also die Aufenthaltswahrscheinlichkeit eines Elektrons im Kraftfeld des Protons. Dabei gibt es für verschiedene Drehimpulsquantenzahlen L verschiedene Wellenfunktionen zum gleichen Energieeigenwert. Die Niveaus sind ( ohne den Spin) L+1 - fach entartet ! die Charakterisierung erfolgt durch die magnetische Quantenzahl m