Lagrangegleichungen 2. Art

From testwiki
Revision as of 00:29, 13 September 2010 by *>SchuBot (→‎Spezialfall konservative Kräfte: Interpunktion, replaced: ! → !)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=5}} Kategorie:Mechanik __SHOWFACTBOX__


Betrachten wir wieder das d'Alembertsche Prinzip:



Linke Seite:


Mit und


Beweis für die letzte Deduktion:



Somit ergibt sich für die linke Seite



Ziel ist es, diese Seite durch die gesamte Kinetische Energie{{#set:Fachbegriff=Kinetische Energie|Index=Kinetische Energie}} auszudrücken:




Somit folgt:





Der T-abhängige Ausdruck ist jedoch in völlig frei variierbar. Somit ist keine lineare Abhängigkeit der Variationen über verschiedene j gegeben.

Jedes ist für sich frei variierbar, so dass der Ausdruck auf der linken Seite für sich Null wird:



heißt Lagrange- Gleichungen 2. Art

{{#set:Definition=Lagrange- Gleichungen 2. Art|Index=Lagrange- Gleichungen 2. Art}}


Die Lagrangegleichungen der zweiten Art können aus dem d ´Alembertschen Prinzip nur für holonome Zwangsbedingungen gewonnen werden (im Gegensatz zur Lagrangegleichung erster Art).

Dies liegt daran, dass nur für holonome Zwangsbedingungen generalisierte Koordinaten{{#set:Fachbegriff=generalisierte Koordinaten|Index=generalisierte Koordinaten}} definiert werden können:

Spezialfall konservative Kräfte[edit | edit source]


Dies bedingt jedoch:



Wir können uns die Lagrangefunktion derart definieren, dass:



Es folgt:



Die sagenumwobene Lagrangegleichung 2. Art für konservative Kräfte!

Anmerkung:


Anwendungsschema für Lagrangegleichungen zweiter Art:[edit | edit source]

MISSING

Die Atwoodsche Fallmaschine miniatur Generalisierte Koordinate: q



Beispiel 2: miniatur|Eine Masse m rotiert mit Winkelgeschwindigkeit w an einem Faden der Länge Ro, welcher mit Geschwindigkeit c durch ein Loch gezogen wird (rheonome Zwangsbedingung). Eine Masse m rotiert mit Winkelgeschwindigkeit w an einem Faden der Länge Ro, welcher mit Geschwindigkeit c durch ein Loch gezogen wird (rheonome Zwangsbedingung).

Generalisierte Koordinate q ist der Winkel



Dahin kommt man im Übrigen aus:




Somit haben wir eine Bewegungsgleichung für die Winkelgeschwindigkeit gefunden:



Bestimmung der Konstanten aus den Anfangsbedingungen liefert:

Drehimpuls:



Durch Integration gewinnt man:



Das heißt, wie zu erwarten war, die Masse dreht sich immer schneller, je kürzer der Faden wird (Drehimpulserhaltung!)