Relativistische Formulierung der Elektrodynamik

From testwiki
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=6|Abschnitt=}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Ko- und Kontravariante Schreibweise der Relativitätstheorie

Grundpostulat der speziellen Relativitätstheorie:

Kein Inertialsystem ist gegenüber einem anderen ausgezeichnet ! ( Einstein, 1904). Die Lichtgeschwindigkeit c ist in jedem Inertialsystem gleich !

Für Lorentz- Transformationen !

Formalisierung: Der Raumzeitliche Abstand als

(ds)2:=(cdt)2(dr¯)2

Zwischen 2 Ereignissen bleibt der raumzeitliche Abstand invariant bei Lorentz- Transformationen ! zwischen den Inertialsystemen : ΣΣ´

Ziel: Um dies sofort zu sehen führt man Vierervektoren ein. Dann schreibt man (ds)2 als Skalarprodukt von Vierervektoren im Minkowski- Raum V und man benutze den Formalismus der linearen orthogonalen Transformation , unter denen das Skalarprodukt invariant bleibt:

In der ko / kontravarianten Schreibweise tritt jeder Vierervektor in 2 möglichen Versionen auf:

kontravariante Komponenten:

xix1:=ctx1,x2,x3

als Komponenten des Ortsvektors r¯

kovariante Komponenten

xi:x0:=ctxα=xα,α=1,2,3

kovarianter Vektor V~ , dualer Vektorraum zu V ! Merke: Die Räume der kovarianten Vektoren ist dual zur menge der kontravarianten -> V~ als Raum der linearen Funktionale l: VR

Damit werden dann die Skalarprodukte gebildet !

Schreibe

(ds)2=dx0dx0+dx1dx1+dx2dx2+dx3dx3=dxidxi

Mit: Summenkonvention ! über je einen ko- und einen kontravarianten Index ( hier i =0,1,2,3) wird summiert !

Physikalische Anwendung

Lorentz- Invarianten lassen sich als Skalarprodukt aiai schreiben !

Beispiel: dÁlemebert- Operator:

#=Δ1c22t2=xixi=ii

Vierergeschwindigkeit

ui:=dxidsuiui=dxidxi(ds)2=1mitds=(dxidxi)12=c(1β2)12dt=cγdtu0=γuα=γcvαvα:=dxαdtβ:=vcγ:=11β2

Physikalische Interpretation

uα=1cdxαdτdτ=dtγ

Viererimpuls

pi:=m0cui mit der Ruhemasse m0

Also:

pipi=m02c2uiuiuiui=1pipi=m02c2p0=m0γc=m(v)c=Ecpα=m0γvα=m(v)vαpipi=m02c2uiuiE2=m02c4+c2p¯2

Mit der Energie

E=m(v)c2

Analoge Definition von Tensoren 2. Stufe:

Aik,Aik,Aik,AikA00=A00=A00=A00A10=A10=A10=A10A11=A11=A11=A11

Der metrische Tensor

gik:=δik={δikk=0δikk=1,2,3}=gik

gik=gik=(1000010000100001)

Mittels der Metrik werden Indices gehoben bzw. gesenkt:

gikak=ai

Wichtig fürs Skalarprodukt:

ds2=gikdxidxk=gikdxidxk

Lorentz- Trafo

zwischen Bezugssystemen: Lineare / homogene Trafo

die Lorentz- Transformation für

(x0,x1,x2,x3)=(ct,x,y,z)ds2=c2dt2dx2dy2dz2

Nämlich:

(x0´x1´x2´x3´)=(11β2β1β200β1β211β20000100001)(x0x1x2x3)x´i=Uikxk

Mit Uik=(11β2β1β200β1β211β20000100001)

für v||x1

Wesentliche Eigenschaft ( die Viererschreibweise ist so konstruiert worden):

U ist orthogonale Trafo:

UikUil=δkla´ib´i=UikUilakbl=akbk

Das Skalarprodukt ist invariant, falls U eine orthogonale Trafo ist Bzw. Forderung: Skalarprodukt invariant -> U muss orthogonale Trafo sein !

Umkehr- Transformation:

xi=Ukix´k


{{#ask: |format=embedded |Kategorie:ElektrodynamikKapitel::6Abschnitt::!0Urheber::Prof. Dr. E. Schöll, PhD |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=6|Abschnitt=0}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Inhomogene Maxwellgleichungen im Vakuum

( Erregungsgleichungen)

ε0E¯=ρ1E1+2E2+3E3=1ε0ccρ1F10+2F20+3F30=1ε0cj0νFν0=1ε0cj0wegen0F00=0auchiFi0=1ε0cj0

  1. ×B¯1c2tE¯=μ0(×H¯ε0tE¯)=μ0j¯
  1. Komponente

2B33B2=μ0j1+ε0μ0tE1μ0c=1ε0c2F21.3F13=1ε0cj1+.0F102F21+3F31+0F01=1ε0cj1νFν1=1ε0cj1wegen1F11=0

Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:

νFμν=1ε0cjμνFνμ=1ε0cjμ

Die Viererdivergenz des elektrischen Feldstärketensors !

Bemerkungen

  1. die homogenen Maxwellgleichungen sind durch den Potenzialansatz

{Fμν}={μΦννΦμ}=(01cEx1cEy1cEz1cEx0BzBy1cEyBz0Bx1cEzByBx0)

automatisch erfüllt:

εαβμνβFμν=εαβμνβμΦνεαβμνβνΦμεαβμνβμΦν=0,da:βμΦνsymmetrischεαβμνantisymmetrischεαβμνβνΦμ=0

Aus den inhomogenen Maxwell- Gleichungen

βFβν=ββΦνβνΦβ=1ε0cjν

folgt mit Lorentz- Eichung

μΦμ=0

βνΦβ=νβΦβ=0also:

βFβν=ββΦν=1ε0cjν als inhomogene Wellengleichung

Die Maxwellgleichungen

εαβμνβFμν=εαβμνβμΦνεαβμνβνΦμ=0βFβν=ββΦν=1ε0cjν

sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind. Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null !!

Gauß- System:

βFβν=4πcjν

Relativistisches Hamiltonprinzip

Ziel: Formulierung der Elektrodynamik als Lagrange- Feldtheorie

Die rel. Dynamik eines Massepunktes kann aus dem Extremalprinzip abgeleitet werden, wenn man Die Punkt 1 und 2 als Anfangs- und Endereignis im 4- Raum sieht und wenn man die Ränder bei Variation festhält:

δW=0W=12ds

letzteres: Wirkungsintegral Wichtig: δxi|1,2=0

Newtonsche Mechanik ist Grenzfall:

W=m0c12ds

Wechselwirkung eines Massepunktes mit einem 4- Vektor- Feld

(ϕi)(xj)

W=12{m0cdsϕidxi}

mit den Lorentz- Invarianten

m0cds

und

ϕidxi

Variation:

δW=12{m0cδ(ds)δ(ϕμdxμ)}

Nun:

δ(ds)=δ(dxμdxμ)12=12(dδxμ)dxμ+dxμ(dδxμ)ds(dδxμ)dxμ=dxμ(dδxμ)=dxμds(dδxμ)=uμ(dδxμ)

Außerdem:

δ(ϕμdxμ)=δϕμdxμ+ϕμd(δxμ)

Somit:

δW=12{m0cuμ(dδxμ)δϕμdxμϕμd(δxμ)}

Weiter mit partieller Integration:

12m0cuμd(δxμ)=[m0cuμ(δxμ)]12+12m0cduμ(δxμ)[m0cuμ(δxμ)]12=0,weilδxμ12=012m0cuμd(δxμ)=12m0cduμ(δxμ)=12m0cduμds(δxμ)ds

Weiter:

12ϕμd(δxμ)=[ϕμδxμ]12+12dϕμ(δxμ)

Mit

dϕμ=νϕμdxν=νϕμuνdsδϕμ=νϕμδxνδϕμdxμ=νϕμδxνdxμ=i<>k=μϕνδxμdxν=μϕνuνδxμds

Einsetzen in

δW=12{m0cuμ(dδxμ)δϕμdxμϕμd(δxμ)}

liefert:

δW=12{m0cduμds(μϕννϕμ)uν}δxμ

Wegen

δW=12{m0cduμds(μϕννϕμ)uν}δxμ=0m0cduμds=(μϕννϕμ)uν:=fμνuνfμν=(μϕννϕμ)

Dies ist dann die aus dem hamiltonschen Prinzip abgeleitete Bewegungsgleichung eines Massepunktes der Ruhemasse m0 und der Ladung q unter dem Einfluss der Lorentz- Kraft.

Man setze:

pμ=m0cuμfμν=qcFμν=(μϕννϕμ)ϕμ=qcΦμddspμ=qcFμνuνδW=δ12{m0cdsqcΦμdxμ}=0

Man bestimmt die Ortskomponenten α=1,2,3 über

ddtp¯=q(E¯+v¯×B¯)

überein, denn mit

u0=γuα=γcvα=uα

folgt dann:

ddtp1=q(E1+v2B3v3B2)=q(F10+F211cv2F131cv3)=qγ(F10γ+F21γcv2F13γcv3)=qγF1μuμ

mit

ds=cγdt

ddsp1=qcF1μuμ

Die zeitartige Komponente μ=0 gibt wegen p0=Ec

ddsEc=γc2dEdt=qc(F01u1+F02u2+F03u3)==qγc2(E1v1E2v2E3v3)=qγc2(E1v1+E2v2+E3v3)dEdt=qE¯v¯

Dies ist die Leistungsbilanz: Die Änderung der inneren Energie ist gleich der reingesteckten Arbeit

Eichinvarianz und Ladungserhaltung

Wirkungsintegral:

W=m0c12dsqc12dxμΦμ

Dabei:

m0c12ds=Wt ( Teilchen)

qc12dxμΦμ=Wtf ( Teilchen- Feld- Wechselwirkung)

Verallgemeinerung auf kontinuierliche Massendichte m(xμ)

Vorsicht: m ist hier Massendichte !!!

Wt=cd3rm12ds=ΩdΩmdsdtdΩ:=d3rcdt=dx0dx1dx2dx3

dOmega als Volumenelement im Minkowski- Raum !!!

Bemerkungen:

  1. dΩ
  2. ist eine Lorentz- Invariante , da das Volumen unter orthogonalen Transformationen

Uμν erhalten bleibt.

2) Aus dm0dxμ=μcdxμdtd3rcdt;d3rcdt=dΩdm0dxμ=μcdxμdtdΩ

folgt, dass die Vierer- Massenstromdichte mit Massendichte m= dm0dxμ=μcdxμdtd3rcdt;d3rcdt=dΩdm0dxμ=μcdxμdtdΩ

m0dxμdtgμ

ein Vier- Vektor ist, da dm0,dΩ Lorentz- Skalare sind und natürlich dxμ selbst auch ein Vierervektor

  1. μ2dxμdxμ(dt)2=gμgμ=(μdsdt)2
  2. ist Lorentz - Invariant.

Also gμgμ ist Lorentz- Invariant. Also auch (μdsdt) .

Somit ist Wt insgesamt Lorentz- Invariant !