Stationäre Ströme und Magnetfeld

From testwiki
Revision as of 13:23, 20 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „{{Scripthinweis|2|Elektrodynamik}} =Kontinuitätsgleichung= Bewegte Ladungen entsprechen elektrischem Strom I Experimentelle Erfahrung: Die Ladung bleibt erhal…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=Elektrodynamik|Abschnitt=}} Kategorie:2 __SHOWFACTBOX__


Kontinuitätsgleichung

Bewegte Ladungen entsprechen elektrischem Strom I

Experimentelle Erfahrung: Die Ladung bleibt erhalten:

Q(t)=Vd3rρ(r¯,t)

Damit folgt ein globaler Erhaltungssatz:

ddtQ(t)=ddtVd3rρ(r¯,t)=VδI


δI=ρdVdt=ρ|v|dt|df|cosαdt=ρv¯df¯

Also gerade die Ladung, die durch df¯ pro zeit aus V herausströmt Als eine lokale Größe findet man die elektrische Stromdichte:

j¯(r¯,t):=ρ(r¯,t)v¯(r¯,t)

ddtVd3rρ(r¯,t)=Vdf¯j¯(r¯,t)=Vd3rj¯(r¯,t) ( Gauß !) für alle Volumina V ( einfach zusammenhängend)

Somit folgt die Kontinuitätsgleichung als LOKALER Erhaltungssatz:

tρ(r¯,t)+j¯(r¯,t)=0

Speziell bei stationären Ladungsverteilungen gilt die Divergenzfreiheit des Stroms:

j¯(r¯,t)=0

Aber : natürlich muss deswegen nicht j¯(r¯,t)=0 gelten. Der Strom muss räumlich lediglich stationär sein !

Magnetische Induktion

Experimentelle Erfahrung:

Es existieren Wechselwirkungen zwischen den Ladungen: Eine Kraft wirkt auf Ladungen q, die sich mit v bewegen:

F¯=qv¯×B¯(r¯)

Die sogenannte Lorentz- Kraft !

B¯(r¯) ist die magnetische Induktion am Ort r¯ , die erzeugt wird von den anderen Ladungen mit einer zugeordneten Stromdichte j¯(r¯´) .

Die Erzeugung dieser Magnetischen Induktion erfolgt gemäß des Ampereschen Gesetzes:

B¯(r¯)=μ04πd3r´j¯(r¯´)×r¯r¯´|r¯r¯´|3

Dies läuft völlig analog zur Coulomb- Wechselwirkung in der Elektrostatik:

F¯=qE¯(r¯)E¯(r¯)=14πε0d3r´ρ(r¯´)r¯r¯´|r¯r¯´|

Die Einheiten im SI- System lauten:

[B]=1NsCm=1kgm2Cs2sm2=1Vsm2=1T

Mit diesen Einheiten ist dann μ0=1,26106VsAm festgelegt, wie die Dielektrizitätskonstante jedoch frei wählbar !! Die magnetische Induktion beschreibt keine neue, von der Coulomb- Wechselwirkung unabhängige WW: Man betrachte dazu lediglich die Transformation auf das lokale Ruhesystem einer bewegten Ladung:

Im Gauß System:

F¯=qcv¯×B¯(r¯)

B¯(r¯)=1cd3r´j¯(r¯´)×r¯r¯´|r¯r¯´|3


Die Kraft zwischen 2 stromdurchflossenen Leitern:

Betrachten wir zwei infinit. dünne Leiter L, L´, die mit konstanten Strömen I und I´ durchflossen werden:

Der Strom durch L´:

j¯(r¯´)d3r´=ρd3r´v¯´=ddtρd3r´dr¯´ddtρd3r´=I´j¯(r¯´)d3r´=I´dr¯´

Somit folgt das Biot- Savartsche Gesetz für unendlich lange Leiter L´:

Die magnetische Induktion ist gerade:

B¯(r¯)=μ04πI´L´dr¯´×r¯r¯´|r¯r¯´|3

Die Kraft auf eine Ladung im Volumenelement d³r von L ist damit gerade:

dF¯=ρv¯×B¯(r¯)d3r=j¯×B¯d3r=Idr¯×B¯

Also:

F¯=μ04πII´Ldr¯×L´dr¯´×r¯r¯´|r¯r¯´|3

Dies ist dann die gesamte Kraft von L´ auf L

mit

dr¯×(dr¯´×(r¯r¯))=(dr¯(r¯r¯))dr¯´(dr¯dr¯´)(r¯r¯)undLdr¯r¯r¯´|r¯r¯´|3=1|r¯r¯´||LANfangLEnde=0

( Der Leiter ist entweder geschlossen oder die Enden liegen im Unendlichen) folgt:

F¯=μ04πII´LL´(dr¯dr¯´)r¯r¯´|r¯r¯´|3

für parallele Ströme:

Idr¯I´dr¯´>0 folgt Anziehung für antiparallele Ströme:

Idr¯I´dr¯´<0 dagegen Abstoßung

Man sieht außerdem das dritte Newtonsche Gesetz:

r¯r¯´dr¯dr¯´II´

Somit:

F¯F¯ ( actio gleich reactio)

Die magnetostatischen Feldgleichungen

Sie gelten auch in quasistaischer Näherung: Die zeitliche Änderung muss viel kleiner sein als die räumliche !!

Mit dem Vektorpotenzial

A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´|

Welches nicht eindeutig ist, sondern beliebig gemäß A¯(r¯)A¯+Ψ umgeeicht werden kann. ( Ψ(r¯) beliebig möglich, da ×Ψ=0 )

Mit diesem Vektorpotenzial also kann man schreiben:

B¯=rotA¯(r¯)=×μ04πR3d3r´j¯(r¯´)|r¯r¯´|

Beweis:

rotA¯(r¯)=×μ04πR3d3r´j¯(r¯´)|r¯r¯´|=μ04πR3d3r´r1|r¯r¯´|×j¯(r¯´)r1|r¯r¯´|=r¯r¯´|r¯r¯´|3rotA¯(r¯)=μ04πR3d3r´j¯(r¯´)×r¯r¯´|r¯r¯´|3=B¯(r¯)

Folgende Aussagen sind äquivalent: Es existiert ein Vektorpotenzial mit

B¯=rotA¯(r¯)

divB¯=0

Beweis:

div(rotA¯(r¯))=0

es gibt keine Quellen der magnetischen Induktion ( es existieren keine "magnetischen Ladungen".

Aber: Magnetische Monopole wurden 1936 von Dirac postuliert, um die Quantelung der Ladung zu erklären. ( aus der quantenmechanischen Quantisierung des Drehimpulses !) Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen ! Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten 1035s erzeugt worden sein sollen.

Sehr umstritten ist ein angeblicher experimenteller Nachweis von 1982 ( Spektrum der Wissenschaft, Juni 1982, S. 78 ff.) Der Zusammenhang zwischen

B¯(r¯) und j¯(r¯)

×B¯(r¯)=×(×A¯(r¯))=(A¯(r¯))ΔA¯(r¯)A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´|=μ04πR3d3r´r(j¯(r¯´)|r¯r¯´|)=μ04πR3d3r´j¯(r¯´)r1|r¯r¯´|r1|r¯r¯´|=r´1|r¯r¯´|A¯(r¯)=μ04πR3d3r´[r´(j¯(r¯´)|r¯r¯´|)+1|r¯r¯´|r´j¯(r¯´)]r´j¯(r¯´)=tρ=0A¯(r¯)=μ04πR3d3r´r´(j¯(r¯´)|r¯r¯´|)

Wobei die verwendete Kontinuitätsgleichung natürlich nur für statische Ladungsverteilungen gilt !

Im Allgemeinen Fall gilt dagegen:

A¯(r¯)=μ04πR3d3r´r´(j¯(r¯´)|r¯r¯´|)tμ04πR3d3r´ρ(r¯´,t)|r¯r¯´|μ04πR3d3r´ρ(r¯´,t)|r¯r¯´|=μ0ε0Φ(r¯,t)A¯(r¯)=μ04πSd3f¯´(j¯(r¯´)|r¯r¯´|)μ0ε0tΦ(r¯,t)

Mit dem Gaußschen Satz. Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt:

Sd3f¯´(j¯(r¯´)|r¯r¯´|)=0

Also:

A¯(r¯)=μ0ε0tΦ(r¯,t)

Also:

(A¯(r¯))=μ0ε0tE¯(r¯,t)

Auf der anderen Seite ergibt sich ganz einfach

ΔA¯(r¯)=μ04πR3d3r´Δr(j¯(r¯´)|r¯r¯´|)=μ04πR3d3r´j¯(r¯´)Δr(1|r¯r¯´|)=μ04πR3d3r´j¯(r¯´)δ(r¯r¯´)=μ0j¯(r¯)

wegen

Δr(1|r¯r¯´|)=4πδ(r¯r¯´)

Also:

×B¯(r¯)=(A¯(r¯))ΔA¯(r¯)=μ0j¯(r¯)+μ0ε0tE¯(r¯,t)

Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt:

×B¯(r¯)=μ0j¯(r¯)μ0ε0tE¯(r¯,t)=0

Dies ist die differenzielle Form des Ampereschen Gesetzes Die Ströme sind die Wirbel der magnetischen Induktion !!

Integration über eine Fläche F mit Rand F liefert die Intgralform:

df¯×B¯(r¯)=Fds¯B¯(r¯)=df¯μ0j¯(r¯)=μ0IFds¯B¯(r¯)=μ0I

Mit dem Satz von Stokes Das sogenannte Durchflutungsgesetz !

Zusammenfassung:

Magnetostatik:

divB¯=0B¯=rotA¯ ( quellenfreiheit)

rotB¯=μ0j¯(r¯)Fds¯B¯=μ0IΔA¯=μ0j¯(r¯)

Gilt jedoch nur im Falle der Coulomb- Eichung:

A¯=0

Dies geschieht durch die Umeichung

A¯´(r¯)A¯+Ψ×A¯´(r¯)×A¯+×Ψ×Ψ=0×A¯´(r¯)×A¯×(×A¯´(r¯))=×B¯(r¯)=μ0j¯×(×A¯´(r¯))=(A¯´(r¯))ΔA¯´(r¯)

Elektrostatik:

rotE¯=0E¯=Φ ( Wirbelfreiheit)

ε0E¯=ρε0Vdf¯E¯=Q differenzielle Form / integrale Form

ΔΦ=1ε0ρ(r¯) ( Poissongleichung)

Magnetische Multipole

( stationär)

Ausgangspunkt ist A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´| (mit der Coulomb- Eichung A¯(r¯)=0 )

mit den Randbedingungen A¯(r¯)0 für r-> unendlich

Taylorentwicklung nach 1|r¯r¯´| von analog zum elektrischen Fall: Die Stromverteilung j¯(r¯´) sei stationär für r>>r´

1|r¯r¯´|=1r+1r3(r¯r¯´)+...

A¯(r¯)=μ04πrR3d3r´j¯(r¯´)+μ04πr3R3d3r´j¯(r¯´)(r¯r¯´)+...

Monopol- Term

Mit

r´[xk´j¯(r¯´)]=xk´(r´j¯(r¯´))+j¯(r¯´)(r´xk´)

Im stationären Fall folgt aus der Kontinuitätsgleichung:

r´j¯(r¯´)=0

r´[xk´j¯(r¯´)]=j¯(r¯´)(r´xk´)=jlδkl=jk

Mit r´[xk´j¯(r¯´)]=jk folgt dann:

d3r´jk(r¯´)=d3r´r´[xk´j¯(r¯´)]=Sdf¯[xk´j¯(r¯´)]=0

Somit verschwindet der Monopolterm in der Theorie

Dipol- Term

mit

[r¯´×j¯(r¯´)]×r¯=(r¯r¯´)j¯(r¯j¯)r¯´=2(r¯r¯´)j¯[(r¯r¯´)j¯+(r¯j¯)r¯´]

und mit

r´[xk´(r¯r¯´)j¯]=[(r¯r¯´)jk+xk´(r¯j¯)+xk´(r¯r¯´)r´j¯]r´j¯=0r´[xk´(r¯r¯´)j¯]=[(r¯r¯´)jk+xk´(r¯j¯)]

Folgt:

R3d3r´r´[xk´(r¯r¯´)j¯]=R3d3r´[(r¯r¯´)jk+xk´(r¯j¯)]=0

Da

R3d3r´r´[xk´(r¯r¯´)j¯]=Sdf¯[xk´(r¯r¯´)j¯]=0 weil der Strom verschwindet ! Somit gibt der Term

[(r¯r¯´)j¯+(r¯j¯)r¯´]

keinen Beitrag zum

μ04πr3R3d3r´j¯(r¯´)(r¯r¯´)

Also:

A¯(r¯)=μ04πr312R3d3r´(r¯´×j¯(r¯´))×r¯

Als DIPOLPOTENZIAL !!

A¯(r¯):=μ04πr3m¯×r¯m¯=12R3d3r´(r¯´×j¯(r¯´))

das magnetische Dipolmoment !

Analog zu

Φ(r¯):=14πε0r3p¯r¯p¯:=R3d3r´r¯´ρ(r¯´)

dem elektrischen Dipolmoment

Die magnetische Induktion des Dipolmomentes ergibt sich als:

B¯(r¯):=×μ04πr3m¯×r¯=μ04πr5[3(m¯r¯)r¯r2m¯]

Wegen:

×(a¯×b¯)=(b¯)a¯(a¯)b¯+a¯(b¯)b¯(a¯)

mit

a¯=m¯r3b¯=r¯diva¯=3m¯r¯r5divb¯=3(b¯)a¯=3m¯r2r5(a¯)b¯=m¯r3

Analog ergab sich als elektrisches Dipolfeld:

E¯(r¯):=14πε0r5[3(p¯r¯)r2p¯]

Beispiel: Ebene Leiterschleife L:


df¯´=12r¯´×ds¯´d3r¯´j(r¯´)=ds¯´I

Mit I = Strom durch den Leiter

m¯=12Ld3r´(r¯´×j¯(r¯´))=I2Lr¯´×ds¯´=IFdf¯´=IFn¯

Dabei ist

n¯ die Normale auf der von L eingeschlossenen Fläche F

Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment m¯


analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment p¯=qa¯ , welches von der positiven zur negativen Ladung zeigt.

Bewegte Ladungen N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.

Dabei sei die spezifische Ladung

qimi=qm konstant:

ρ(r¯)=iqiδ(r¯r¯i)j¯(r¯)=iqiv¯iδ(r¯r¯i)v¯i=dr¯idt

Das magnetische Dipolmoment beträgt:

m¯=12Ld3r´(r¯´×j¯(r¯´))=12iqid3r´r¯´×v¯iδ(r¯´r¯i)=12iqir¯i×v¯i=12iqimimir¯i×v¯iqimi=qmm¯=q2mL¯

Mit dem Bahndrehimpuls L¯

m¯=q2mL¯ gilt aber auch für starre Körper !

  • Allgemeines Gesetz !

Jedoch gilt dies nicht für den Spin eines Elektrons !!!

m¯=ge2mS¯g2

Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen !

Kraft auf eine Stromverteilung:

j¯(r¯´)=ρi(r¯´)v¯(r¯´)

im Feld einer externen magnetischen Induktion B¯(r¯´)

Spürt die Lorentzkraft

F¯=d3r´j¯(r¯´)×B¯(r¯´)

Talyorentwicklung liefert:

B¯(r¯´)=B¯(r¯)+[(r¯´r¯)]B¯(r¯)+....F¯=[d3r´j¯(r¯´)]×B¯(r¯´)+d3r´j¯(r¯´)×[(r¯´r¯)]B¯(r¯)+...

im stationären Fall gilt wieder:

[d3r´j¯(r¯´)]=0 ( keine Monopole) Also:

F¯=d3r´j¯(r¯´)×[(r¯´)r]B¯(r¯)d3r´j¯(r¯´)×[(r¯)r]B¯(r¯)d3r´j¯(r¯´)×[(r¯)r]B¯(r¯)=0,dad3r´j¯(r¯´)=0F¯=d3r´j¯(r¯´)×[(r¯´)r]B¯(r¯)[(r¯´)r]B¯(r¯)=r[(r¯´)B¯(r¯)]r¯´×[r×B¯(r¯)]

Man fordert:

[r×B¯(r¯)]=0

( Das externe Feld soll keine Stromwirbel im Bereich von j¯(r¯´) haben:

F¯=d3r´j¯(r¯´)×r[(r¯´)B¯(r¯)]j¯(r¯´)×r[(r¯´)B¯(r¯)]=r×[((r¯´)B¯(r¯))j¯(r¯´)]+[(r¯´)B¯(r¯)]r×j¯(r¯´)r×j¯(r¯´)=0F¯=d3r´r×[((r¯´)B¯(r¯))j¯(r¯´)]=r×(m¯×B¯(r¯))F¯=r×(m¯×B¯(r¯))=(m¯r)B¯(r¯)=r(m¯B¯(r¯))

( Vergl. S. 34)