Jump to navigation Jump to search

General

Display information for equation id:math.940.88 on revision:940

* Page found: Verallgemeinerte kanonische Verteilung (eq math.940.88)

(force rerendering)

Occurrences on the following pages:

Hash: 2d6de575fe4034a2d3f8f7aeb1dcfb5e

TeX (original user input):

\begin{align}
  & \Gamma \left( \alpha  \right)=\ln \left\langle \exp \left( {{\alpha }_{n}}{{M}^{n}} \right) \right\rangle =\ln \sum\limits_{i}^{{}}{{}}{{P}_{i}}\exp \left( {{\alpha }_{n}}{{M}_{i}}^{n} \right)=\ln \sum\limits_{i}^{{}}{{}}{{e}^{\Psi -\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \\ 
 & =\ln \left[ {{e}^{\Psi }}\cdot \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=\Psi \left( \lambda  \right)+\ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right] \\ 
 & \ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=-\Psi \left( \lambda -\alpha  \right) \\ 
 & \Rightarrow \Gamma \left( \alpha  \right)=\Psi \left( \lambda  \right)-\Psi \left( \lambda -\alpha  \right) \\ 
 & \Rightarrow {{Q}^{mn}}=-{{\left. \frac{{{\partial }^{2}}\Psi \left( \lambda -\alpha  \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}} \right|}_{\alpha =0}}=-\frac{{{\partial }^{2}}\Psi \left( \lambda  \right)}{\partial {{\lambda }_{m}}\partial {{\lambda }_{n}}}=-{{\eta }^{mn}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\Gamma \left(\alpha \right)=\ln \left\langle \exp \left({{\alpha }_{n}}{{M}^{n}}\right)\right\rangle =\ln \sum \limits _{i}^{}{}{{P}_{i}}\exp \left({{\alpha }_{n}}{{M}_{i}}^{n}\right)=\ln \sum \limits _{i}^{}{}{{e}^{\Psi -\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\\&=\ln \left[{{e}^{\Psi }}\cdot \sum \limits _{i}^{}{}{{e}^{-\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\right]=\Psi \left(\lambda \right)+\ln \left[\sum \limits _{i}^{}{}{{e}^{-\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\right]\\&\ln \left[\sum \limits _{i}^{}{}{{e}^{-\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\right]=-\Psi \left(\lambda -\alpha \right)\\&\Rightarrow \Gamma \left(\alpha \right)=\Psi \left(\lambda \right)-\Psi \left(\lambda -\alpha \right)\\&\Rightarrow {{Q}^{mn}}=-{{\left.{\frac {{{\partial }^{2}}\Psi \left(\lambda -\alpha \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}}}\right|}_{\alpha =0}}=-{\frac {{{\partial }^{2}}\Psi \left(\lambda \right)}{\partial {{\lambda }_{m}}\partial {{\lambda }_{n}}}}=-{{\eta }^{mn}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (7.804 KB / 704 B) :

Γ(α)=lnexp(αnMn)=lniPiexp(αnMin)=lnieΨ(λnαn)Min=ln[eΨie(λnαn)Min]=Ψ(λ)+ln[ie(λnαn)Min]ln[ie(λnαn)Min]=Ψ(λα)Γ(α)=Ψ(λ)Ψ(λα)Qmn=2Ψ(λα)αmαn|α=0=2Ψ(λ)λmλn=ηmn
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi>ln</mi><mo>&#x2061;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>ln</mi><mo>&#x2061;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x03A8;</mi></mrow></msup><mo>&#x22C5;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo>&#x2212;</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo>&#x2212;</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>Q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msup><mo>=</mo><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo>&#x2212;</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mi>&#x2202;</mi><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>=</mo><mn>0</mn></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><msup><mi>&#x03B7;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page

Identifiers

  • Γ
  • α
  • αn
  • M
  • n
  • i
  • Pi
  • αn
  • Mi
  • n
  • i
  • e
  • Ψ
  • λn
  • αn
  • Mi
  • n
  • e
  • Ψ
  • i
  • e
  • λn
  • αn
  • Mi
  • n
  • Ψ
  • λ
  • i
  • e
  • λn
  • αn
  • Mi
  • n
  • i
  • e
  • λn
  • αn
  • Mi
  • n
  • Ψ
  • λ
  • α
  • Γ
  • α
  • Ψ
  • λ
  • Ψ
  • λ
  • α
  • Q
  • m
  • n
  • Ψ
  • λ
  • α
  • αm
  • αn
  • α
  • Ψ
  • λ
  • λm
  • λn
  • η
  • m
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results