Jump to navigation
Jump to search
General
Display information for equation id:math.940.88 on revision:940
* Page found: Verallgemeinerte kanonische Verteilung (eq math.940.88)
(force rerendering)Occurrences on the following pages:
Hash: 2d6de575fe4034a2d3f8f7aeb1dcfb5e
TeX (original user input):
\begin{align}
& \Gamma \left( \alpha \right)=\ln \left\langle \exp \left( {{\alpha }_{n}}{{M}^{n}} \right) \right\rangle =\ln \sum\limits_{i}^{{}}{{}}{{P}_{i}}\exp \left( {{\alpha }_{n}}{{M}_{i}}^{n} \right)=\ln \sum\limits_{i}^{{}}{{}}{{e}^{\Psi -\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \\
& =\ln \left[ {{e}^{\Psi }}\cdot \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=\Psi \left( \lambda \right)+\ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right] \\
& \ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=-\Psi \left( \lambda -\alpha \right) \\
& \Rightarrow \Gamma \left( \alpha \right)=\Psi \left( \lambda \right)-\Psi \left( \lambda -\alpha \right) \\
& \Rightarrow {{Q}^{mn}}=-{{\left. \frac{{{\partial }^{2}}\Psi \left( \lambda -\alpha \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}} \right|}_{\alpha =0}}=-\frac{{{\partial }^{2}}\Psi \left( \lambda \right)}{\partial {{\lambda }_{m}}\partial {{\lambda }_{n}}}=-{{\eta }^{mn}} \\
\end{align}
TeX (checked):
{\begin{aligned}&\Gamma \left(\alpha \right)=\ln \left\langle \exp \left({{\alpha }_{n}}{{M}^{n}}\right)\right\rangle =\ln \sum \limits _{i}^{}{}{{P}_{i}}\exp \left({{\alpha }_{n}}{{M}_{i}}^{n}\right)=\ln \sum \limits _{i}^{}{}{{e}^{\Psi -\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\\&=\ln \left[{{e}^{\Psi }}\cdot \sum \limits _{i}^{}{}{{e}^{-\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\right]=\Psi \left(\lambda \right)+\ln \left[\sum \limits _{i}^{}{}{{e}^{-\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\right]\\&\ln \left[\sum \limits _{i}^{}{}{{e}^{-\left({{\lambda }_{n}}-{{\alpha }_{n}}\right){{M}_{i}}^{n}}}\right]=-\Psi \left(\lambda -\alpha \right)\\&\Rightarrow \Gamma \left(\alpha \right)=\Psi \left(\lambda \right)-\Psi \left(\lambda -\alpha \right)\\&\Rightarrow {{Q}^{mn}}=-{{\left.{\frac {{{\partial }^{2}}\Psi \left(\lambda -\alpha \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}}}\right|}_{\alpha =0}}=-{\frac {{{\partial }^{2}}\Psi \left(\lambda \right)}{\partial {{\lambda }_{m}}\partial {{\lambda }_{n}}}}=-{{\eta }^{mn}}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (7.804 KB / 704 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">Γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>ln</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mi>ln</mi><mo>⁡</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>ln</mi><mo>⁡</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">Ψ</mi><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>−</mo><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>ln</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">Ψ</mi></mrow></msup><mo>⋅</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>−</mo><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>λ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>ln</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>−</mo><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>ln</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>−</mo><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>−</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>λ</mi><mo>−</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi mathvariant="normal">Γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>λ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>λ</mi><mo>−</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msup><mi>Q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msup><mo>=</mo><mo>−</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>λ</mi><mo>−</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mi>∂</mi><msub><mi>α</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>α</mi><mo>=</mo><mn>0</mn></mrow></mrow></msub><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>λ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mo>−</mo><msup><mi>η</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results