Jump to navigation Jump to search

General

Display information for equation id:math.940.69 on revision:940

* Page found: Verallgemeinerte kanonische Verteilung (eq math.940.69)

(force rerendering)

Occurrences on the following pages:

Hash: 65455d5eccdd814501bad735b424cba3

TeX (original user input):

\begin{align}
  & \delta \Psi =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\ 
 & \delta \left\langle {{M}^{n}} \right\rangle =\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\ 
 & \Rightarrow K\left( P+\delta P,P \right)=\delta \Psi -\delta {{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle  \right)=\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}-\left\langle {{M}^{n}} \right\rangle  \right)\delta {{\lambda }_{n}}+\left( \frac{1}{2}\frac{\partial }{\partial {{\lambda }_{m}}}\frac{\partial \Psi }{\partial {{\lambda }_{n}}}-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}} \right)\delta {{\lambda }_{n}}\delta {{\lambda }_{m}} \\ 
 & \frac{\partial \Psi }{\partial {{\lambda }_{n}}}=\left\langle {{M}^{n}} \right\rangle \Rightarrow \left( \frac{1}{2}\frac{\partial }{\partial {{\lambda }_{m}}}\frac{\partial \Psi }{\partial {{\lambda }_{n}}}-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}} \right)=-\frac{1}{2}\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}} \\ 
 & \left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}-\left\langle {{M}^{n}} \right\rangle  \right)=0 \\ 
 & \Rightarrow K\left( P+\delta P,P \right)=-\frac{1}{2}\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}} \\ 
 & K\left( P+\delta P,P \right)\ge 0 \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\delta \Psi ={\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\delta {{\lambda }_{n}}+{\frac {1}{2}}{\frac {{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+....\\&\delta \left\langle {{M}^{n}}\right\rangle ={\frac {\partial \left\langle {{M}^{n}}\right\rangle }{\partial {{\lambda }_{n}}}}\delta {{\lambda }_{n}}+{\frac {1}{2}}{\frac {{{\partial }^{2}}\left\langle {{M}^{n}}\right\rangle }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+....\\&\Rightarrow K\left(P+\delta P,P\right)=\delta \Psi -\delta {{\lambda }_{n}}\left(\left\langle {{M}^{n}}\right\rangle +\delta \left\langle {{M}^{n}}\right\rangle \right)=\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\delta {{\lambda }_{n}}-\left\langle {{M}^{n}}\right\rangle \right)\delta {{\lambda }_{n}}+\left({\frac {1}{2}}{\frac {\partial }{\partial {{\lambda }_{m}}}}{\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}-{\frac {\partial \left\langle {{M}^{n}}\right\rangle }{\partial {{\lambda }_{m}}}}\right)\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}\\&{\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}=\left\langle {{M}^{n}}\right\rangle \Rightarrow \left({\frac {1}{2}}{\frac {\partial }{\partial {{\lambda }_{m}}}}{\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}-{\frac {\partial \left\langle {{M}^{n}}\right\rangle }{\partial {{\lambda }_{m}}}}\right)=-{\frac {1}{2}}{\frac {\partial \left\langle {{M}^{n}}\right\rangle }{\partial {{\lambda }_{m}}}}\\&\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\delta {{\lambda }_{n}}-\left\langle {{M}^{n}}\right\rangle \right)=0\\&\Rightarrow K\left(P+\delta P,P\right)=-{\frac {1}{2}}{\frac {\partial \left\langle {{M}^{n}}\right\rangle }{\partial {{\lambda }_{m}}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}\\&K\left(P+\delta P,P\right)\geq 0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (11.74 KB / 663 B) :

δΨ=Ψλnδλn+122Ψλnλmδλnδλm+....δMn=Mnλnδλn+122Mnλnλmδλnδλm+....K(P+δP,P)=δΨδλn(Mn+δMn)=(ΨλnδλnMn)δλn+(12λmΨλnMnλm)δλnδλmΨλn=Mn(12λmΨλnMnλm)=12Mnλm(ΨλnδλnMn)=0K(P+δP,P)=12MnλmδλnδλmK(P+δP,P)0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03B4;</mi><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>K</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo>+</mo><mi>&#x03B4;</mi><mi>P</mi><mo>,</mo><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>&#x03B4;</mi><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>K</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo>+</mo><mi>&#x03B4;</mi><mi>P</mi><mo>,</mo><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>K</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo>+</mo><mi>&#x03B4;</mi><mi>P</mi><mo>,</mo><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page

Identifiers

  • δ
  • Ψ
  • Ψ
  • λn
  • δ
  • λn
  • Ψ
  • λn
  • λm
  • δ
  • λn
  • δ
  • λm
  • δ
  • M
  • n
  • M
  • n
  • λn
  • δ
  • λn
  • M
  • n
  • λn
  • λm
  • δ
  • λn
  • δ
  • λm
  • K
  • P
  • δ
  • P
  • P
  • δ
  • Ψ
  • δ
  • λn
  • M
  • n
  • δ
  • M
  • n
  • Ψ
  • λn
  • δ
  • λn
  • M
  • n
  • δ
  • λn
  • λm
  • Ψ
  • λn
  • M
  • n
  • λm
  • δ
  • λn
  • δ
  • λm
  • Ψ
  • λn
  • M
  • n
  • λm
  • Ψ
  • λn
  • M
  • n
  • λm
  • M
  • n
  • λm
  • Ψ
  • λn
  • δ
  • λn
  • M
  • n
  • K
  • P
  • δ
  • P
  • P
  • M
  • n
  • λm
  • δ
  • λn
  • δ
  • λm
  • K
  • P
  • δ
  • P
  • P

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results