Jump to navigation
Jump to search
General
Display information for equation id:math.930.78 on revision:930
* Page found: Verallgemeinerte kanonische Verteilung (eq math.930.78)
(force rerendering)Occurrences on the following pages:
Hash: b9c943d8614f7cf890acb9eb6a081cf4
TeX (original user input):
\begin{align}
& \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right) \\
& \left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\left\langle {{M}^{m}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)={{\eta }^{mn}} \\
& \left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right)=\left\langle {{M}^{n}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right)={{\eta }^{nm}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{\frac {\partial }{\partial {{\lambda }_{n}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{m}}}}\right)={\frac {\partial }{\partial {{\lambda }_{m}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\right)\\&\left({\frac {\partial \Psi }{\partial {{\lambda }_{m}}}}\right)=\left\langle {{M}^{m}}\right\rangle \Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{m}}}}\right)={{\eta }^{mn}}\\&\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\right)=\left\langle {{M}^{n}}\right\rangle \Rightarrow {\frac {\partial }{\partial {{\lambda }_{m}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\right)={{\eta }^{nm}}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (4.974 KB / 463 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>η</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>η</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>m</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results