Jump to navigation Jump to search

General

Display information for equation id:math.930.78 on revision:930

* Page found: Verallgemeinerte kanonische Verteilung (eq math.930.78)

(force rerendering)

Occurrences on the following pages:

Hash: b9c943d8614f7cf890acb9eb6a081cf4

TeX (original user input):

\begin{align}
  & \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right) \\ 
 & \left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\left\langle {{M}^{m}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)={{\eta }^{mn}} \\ 
 & \left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right)=\left\langle {{M}^{n}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right)={{\eta }^{nm}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {\partial }{\partial {{\lambda }_{n}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{m}}}}\right)={\frac {\partial }{\partial {{\lambda }_{m}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\right)\\&\left({\frac {\partial \Psi }{\partial {{\lambda }_{m}}}}\right)=\left\langle {{M}^{m}}\right\rangle \Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{m}}}}\right)={{\eta }^{mn}}\\&\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\right)=\left\langle {{M}^{n}}\right\rangle \Rightarrow {\frac {\partial }{\partial {{\lambda }_{m}}}}\left({\frac {\partial \Psi }{\partial {{\lambda }_{n}}}}\right)={{\eta }^{nm}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.974 KB / 463 B) :

λn(Ψλm)=λm(Ψλn)(Ψλm)=Mmλn(Ψλm)=ηmn(Ψλn)=Mnλm(Ψλn)=ηnm
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>&#x03B7;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>&#x03B7;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>m</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page

Identifiers

  • λn
  • Ψ
  • λm
  • λm
  • Ψ
  • λn
  • Ψ
  • λm
  • M
  • m
  • λn
  • Ψ
  • λm
  • η
  • m
  • n
  • Ψ
  • λn
  • M
  • n
  • λm
  • Ψ
  • λn
  • η
  • n
  • m

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results