Jump to navigation Jump to search

General

Display information for equation id:math.391.0 on revision:391

* Page found: Riemannscher Krümmungstensor (eq math.391.0)

(force rerendering)

Occurrences on the following pages:

Hash: dc6e8906e306d2ec0cd46d8462866ddd

TeX (original user input):

{R^{\color{Violet}\alpha}} _
{{\color{WildStrawberry}\beta} {\color{Orange}\mu} {\color{Red}\nu}}
 =
{\partial _{\color{Orange}\mu}}
\Gamma _{{\color{WildStrawberry}\beta} {\color{Red}\nu} }^{\color{Violet}\alpha}
 -
{\partial _{{\color{Orange}\mu} {\color{Red}\nu}}}
\Gamma _{{\color{WildStrawberry}\beta} {\color{Orange}\mu} }^{\color{Violet}\alpha}
 +
 \Gamma _{\sigma {\color{Orange}\mu} } ^ {\color{Violet}\alpha}
 \Gamma _{{\color{WildStrawberry}\beta} {\color{Red}\nu} }^\sigma
 -
 \Gamma _{\sigma {\color{Red}\nu}} ^ {\color{Violet}\alpha}
 \Gamma _{{\color{WildStrawberry}\beta} {\color{Orange}\mu} }^\sigma

TeX (checked):

{R^{\color {Violet}\alpha }}_{{\color {WildStrawberry}\beta }{\color {Orange}\mu }{\color {Red}\nu }}={\partial _{\color {Orange}\mu }}\Gamma _{{\color {WildStrawberry}\beta }{\color {Red}\nu }}^{\color {Violet}\alpha }-{\partial _{{\color {Orange}\mu }{\color {Red}\nu }}}\Gamma _{{\color {WildStrawberry}\beta }{\color {Orange}\mu }}^{\color {Violet}\alpha }+\Gamma _{\sigma {\color {Orange}\mu }}^{\color {Violet}\alpha }\Gamma _{{\color {WildStrawberry}\beta }{\color {Red}\nu }}^{\sigma }-\Gamma _{\sigma {\color {Red}\nu }}^{\color {Violet}\alpha }\Gamma _{{\color {WildStrawberry}\beta }{\color {Orange}\mu }}^{\sigma }

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.447 KB / 361 B) :

Rαβμν=μΓβναμνΓβμα+ΓσμαΓβνσΓσναΓβμσ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mrow></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mrow></msub><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><mo>&#x2212;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mrow></mrow></msub><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><mo>+</mo><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msubsup><mo>&#x2212;</mo><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msubsup></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Riemannscher Krümmungstensor page

Identifiers

  • R
  • α
  • β
  • μ
  • ν
  • μ
  • Γ
  • β
  • ν
  • α
  • μ
  • ν
  • Γ
  • β
  • μ
  • α
  • Γ
  • σ
  • μ
  • α
  • Γ
  • β
  • ν
  • σ
  • Γ
  • σ
  • ν
  • α
  • Γ
  • β
  • μ
  • σ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results