Jump to navigation Jump to search

General

Display information for equation id:math.384.0 on revision:384

* Page found: Riemannscher Krümmungstensor (eq math.384.0)

(force rerendering)

Occurrences on the following pages:

Hash: 855c047b4be35fafb783881b06c745b6

TeX (original user input):

R_{\beta \mu \nu }^\alpha  = {\partial _\mu }\Gamma _{\beta \nu }^\alpha  - {\partial _{\mu \nu }}\Gamma _{\beta \mu }^\alpha  + \Gamma _{\sigma \mu }^\alpha \Gamma _{\beta \nu }^\sigma  - \Gamma _{\sigma \nu }^\alpha \Gamma _{\beta \mu }^\sigma

TeX (checked):

R_{\beta \mu \nu }^{\alpha }={\partial _{\mu }}\Gamma _{\beta \nu }^{\alpha }-{\partial _{\mu \nu }}\Gamma _{\beta \mu }^{\alpha }+\Gamma _{\sigma \mu }^{\alpha }\Gamma _{\beta \nu }^{\sigma }-\Gamma _{\sigma \nu }^{\alpha }\Gamma _{\beta \mu }^{\sigma }

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (1.923 KB / 301 B) :

Rβμνα=μΓβναμνΓβμα+ΓσμαΓβνσΓσναΓβμσ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msubsup><mi>R</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msubsup><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msubsup><mo>&#x2212;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msub><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03BC;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msubsup><mo>+</mo><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi><mi>&#x03BC;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msubsup><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msubsup><mo>&#x2212;</mo><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msubsup><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03BC;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msubsup></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Riemannscher Krümmungstensor page

Identifiers

  • R
  • β
  • μ
  • ν
  • α
  • μ
  • Γ
  • β
  • ν
  • α
  • μ
  • ν
  • Γ
  • β
  • μ
  • α
  • Γ
  • σ
  • μ
  • α
  • Γ
  • β
  • ν
  • σ
  • Γ
  • σ
  • ν
  • α
  • Γ
  • β
  • μ
  • σ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results