Jump to navigation Jump to search

General

Display information for equation id:math.3414.6 on revision:3414

* Page found: Das Schalenmodell des Kerns (eq math.3414.6)

(force rerendering)

Occurrences on the following pages:

Hash: 7dc4f0bad0910394dafc0a7ef73660fe

TeX (original user input):

\begin{align}
\vec l \vec s= & \frac{1}{2}\left( \vec j^{2}- \vec l^{2}- \vec S^{2}\right)\\
\Rightarrow & \frac{1}{2}\left(j(j-1)-l(l+1)-\frac{3}{4}\right)\\
= & \frac{1}{2}l\quad\text{fuer}\quad j=l+{\frac{1}{2}}\\
= & -\frac{1}{2}(l+1)\quad\text{fuer}\quad j=l+{\frac{1}{2}}\end{align}

TeX (checked):

{\begin{aligned}{\vec {l}}{\vec {s}}=&{\frac {1}{2}}\left({\vec {j}}^{2}-{\vec {l}}^{2}-{\vec {S}}^{2}\right)\\\Rightarrow &{\frac {1}{2}}\left(j(j-1)-l(l+1)-{\frac {3}{4}}\right)\\=&{\frac {1}{2}}l\quad {\text{fuer}}\quad j=l+{\frac {1}{2}}\\=&-{\frac {1}{2}}(l+1)\quad {\text{fuer}}\quad j=l+{\frac {1}{2}}\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.164 KB / 485 B) :

ls=12(j2l2S2)12(j(j1)l(l+1)34)=12lfuerj=l+12=12(l+1)fuerj=l+12
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>l</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo></mo></mover></mrow></mrow><mo>=</mo></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>l</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>S</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><mo>&#x21D2;</mo></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>j</mi><mo stretchy="false">(</mo><mi>j</mi><mo>&#x2212;</mo><mn>1</mn><mo stretchy="false">)</mo><mo>&#x2212;</mo><mi>l</mi><mo stretchy="false">(</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><mo>=</mo></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>l</mi><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><mtext>fuer</mtext></mrow><mspace width="1em"></mspace><mi>j</mi><mo>=</mo><mi>l</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mo>=</mo></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo stretchy="false">(</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><mtext>fuer</mtext></mrow><mspace width="1em"></mspace><mi>j</mi><mo>=</mo><mi>l</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Schalenmodell des Kerns page

Identifiers

  • l
  • s
  • j
  • l
  • S
  • j
  • j
  • l
  • l
  • l
  • j
  • l
  • l
  • j
  • l

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results