Jump to navigation
Jump to search
General
Display information for equation id:math.3053.0 on revision:3053
* Page found: Nakajima-Zwanzig-Gleichung (eq math.3053.0)
(force rerendering)Occurrences on the following pages:
Hash: 8150c8758587803be200344e5387ce2d
TeX (original user input):
\begin{align}
& {{d}_{t}}\chi =L\chi \\
& \chi =\mathcal{P}\chi +\mathcal{Q}\chi \\
& {{d}_{t}}\left( \begin{matrix}
\mathcal{P} \\
\mathcal{Q} \\
\end{matrix} \right)\chi =\left( \begin{matrix}
\mathcal{P} \\
\mathcal{Q} \\
\end{matrix} \right)L\left( \begin{matrix}
\mathcal{P} \\
\mathcal{Q} \\
\end{matrix} \right)\chi +\left( \begin{matrix}
\mathcal{P} \\
\mathcal{Q} \\
\end{matrix} \right)L\left( \begin{matrix}
\mathcal{Q} \\
\mathcal{P} \\
\end{matrix} \right)\chi \\
& \Rightarrow \mathcal{Q}\chi ={{e}^{\mathcal{Q}Lt}}Q{{\chi }_{0}}+\int '{{e}^{\mathcal{Q}Lt}}\mathcal{Q}L\mathcal{P}\chi (t-{t}') \\
& \Rightarrow {{\text{d}}_{t}}\mathcal{P}\chi =\mathcal{P}L\mathcal{P}\chi +\underbrace{\mathcal{P}{{e}^{\mathcal{Q}Lt}}Q{{\chi }_{0}}}_{=0}+\mathcal{P}L\int '{{e}^{\mathcal{Q}Lt}}\mathcal{Q}L\mathcal{P}\chi (t-{t}') \\
\end{align}
TeX (checked):
{\begin{aligned}&{{d}_{t}}\chi =L\chi \\&\chi ={\mathcal {P}}\chi +{\mathcal {Q}}\chi \\&{{d}_{t}}\left({\begin{matrix}{\mathcal {P}}\\{\mathcal {Q}}\\\end{matrix}}\right)\chi =\left({\begin{matrix}{\mathcal {P}}\\{\mathcal {Q}}\\\end{matrix}}\right)L\left({\begin{matrix}{\mathcal {P}}\\{\mathcal {Q}}\\\end{matrix}}\right)\chi +\left({\begin{matrix}{\mathcal {P}}\\{\mathcal {Q}}\\\end{matrix}}\right)L\left({\begin{matrix}{\mathcal {Q}}\\{\mathcal {P}}\\\end{matrix}}\right)\chi \\&\Rightarrow {\mathcal {Q}}\chi ={{e}^{{\mathcal {Q}}Lt}}Q{{\chi }_{0}}+\int '{{e}^{{\mathcal {Q}}Lt}}{\mathcal {Q}}L{\mathcal {P}}\chi (t-{t}')\\&\Rightarrow {{\text{d}}_{t}}{\mathcal {P}}\chi ={\mathcal {P}}L{\mathcal {P}}\chi +\underbrace {{\mathcal {P}}{{e}^{{\mathcal {Q}}Lt}}Q{{\chi }_{0}}} _{=0}+{\mathcal {P}}L\int '{{e}^{{\mathcal {Q}}Lt}}{\mathcal {Q}}L{\mathcal {P}}\chi (t-{t}')\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (7.604 KB / 669 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mi>χ</mi><mo>=</mo><mi>L</mi><mi>χ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>χ</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><mi>χ</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>χ</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>χ</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>L</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>χ</mi><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>L</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>χ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>χ</mi><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>L</mi><mi>t</mi></mrow></mrow></msup><mi>Q</mi><msub><mi>χ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><msup><mo texclass="OP">∫</mo><mo>′</mo></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>L</mi><mi>t</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>L</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><mi>χ</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msup><msup><mi>t</mi><mo>′</mo></msup><mo>′</mo></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mrow data-mjx-texclass="ORD"><mtext>d</mtext></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><mi>χ</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><mi>L</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><mi>χ</mi><mo>+</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>L</mi><mi>t</mi></mrow></mrow></msup><mi>Q</mi><msub><mi>χ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mo>⏟</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>=</mo><mn>0</mn></mrow></mrow></munder><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><mi>L</mi><msup><mo texclass="OP">∫</mo><mo>′</mo></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>L</mi><mi>t</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒬</mi></mrow></mrow><mi>L</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-variant="-tex-calligraphic" mathvariant="script">𝒫</mi></mrow></mrow><mi>χ</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msup><msup><mi>t</mi><mo>′</mo></msup><mo>′</mo></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Nakajima-Zwanzig-Gleichung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results