Jump to navigation Jump to search

General

Display information for equation id:math.2683.25 on revision:2683

* Page found: Weitere Eigenschaften der Dirac-Gleichung (eq math.2683.25)

(force rerendering)

Occurrences on the following pages:

Hash: 94aa79320caa4586ccaf852f3f6adc32

TeX (original user input):

\begin{align}

& \left( \mathfrak{i} {{\partial }_{t}}-\underline{\alpha }\frac{1}{\mathfrak{i} }\underline{\nabla }-\beta m \right)\Psi =0\quad |\centerdot \beta  \\

& \left( \mathfrak{i} {{\gamma }^{0}}\underbrace{{{\partial }_{t}}}_{{{\partial }_{0}}}+\frac{1}{\mathfrak{i} }\sum\limits_{k=1}^{3}{{{\gamma }^{k}}\underbrace{{{\partial }_{{{x}^{k}}}}}_{{{\partial }_{k}}}} \right)\Psi =0 \\

\end{align}

TeX (checked):

{\begin{aligned}&\left({\mathfrak {i}}{{\partial }_{t}}-{\underline {\alpha }}{\frac {1}{\mathfrak {i}}}{\underline {\nabla }}-\beta m\right)\Psi =0\quad |\centerdot \beta \\&\left({\mathfrak {i}}{{\gamma }^{0}}\underbrace {{\partial }_{t}} _{{\partial }_{0}}+{\frac {1}{\mathfrak {i}}}\sum \limits _{k=1}^{3}{{{\gamma }^{k}}\underbrace {{\partial }_{{x}^{k}}} _{{\partial }_{k}}}\right)\Psi =0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.903 KB / 566 B) :

(itα_1i_βm)Ψ=0|β(iγ0t0+1ik=13γkxkk)Ψ=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03B1;</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mo>|</mo><mo variantform="True">&#x22C5;</mo><mi>&#x03B2;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><munder><mrow data-mjx-texclass="OP"><munder><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></munder><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="ORD"><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><munder><mrow data-mjx-texclass="OP"><munder><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></msub><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Weitere Eigenschaften der Dirac-Gleichung page

Identifiers

  • i
  • t
  • α_
  • i
  • β
  • m
  • Ψ
  • β
  • i
  • γ
  • t
  • i
  • k
  • γ
  • k
  • x
  • k
  • k
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results