Jump to navigation Jump to search

General

Display information for equation id:math.2680.3 on revision:2680

* Page found: Weitere Eigenschaften der Dirac-Gleichung (eq math.2680.3)

(force rerendering)

Occurrences on the following pages:

Hash: f1d8e7895289e0189dd6c1c66d50e766

TeX (original user input):

\begin{align}

& \mathfrak{i} {{\Psi }^{+}}\dot{\Psi }\quad ={{\Psi }^{+}}\left( \underline{\alpha }.\hat{\underline{p}}+\beta m \right)\Psi  \\

& -\mathfrak{i} {{{\dot{\Psi }}}^{+}}\Psi \quad ={{\left( \underline{p}\Psi  \right)}^{+}}\underline{\alpha }\Psi +m{{\Psi }^{+}}\beta \Psi  \\

& ------------------------ \\

& \mathfrak{i} {{\partial }_{t}}\underbrace{\left( {{\Psi }^{+}}\Psi  \right)}_{:=\rho }\quad ={{\Psi }^{+}}\underline{\alpha }\left( \underline{p}\Psi  \right)-{{\left( \underline{p}\Psi  \right)}^{+}}\underline{\alpha }\Psi  \\

& \quad =-\mathfrak{i} \sum\limits_{k}{{{\Psi }^{+}}{{\alpha }_{k}}\left( {{\partial }_{k}}\Psi  \right)-{{\left( {{\partial }_{k}}\Psi  \right)}^{+}}{{\alpha }_{k}}\Psi } \\

& \quad =-\mathfrak{i} \sum\limits_{k}{{{\partial }_{k}}\underbrace{\left( {{\Psi }^{+}}{{\alpha }_{k}}\Psi  \right)}_{:={{j}_{k}}}} \\

\end{align}

TeX (checked):

{\begin{aligned}&{\mathfrak {i}}{{\Psi }^{+}}{\dot {\Psi }}\quad ={{\Psi }^{+}}\left({\underline {\alpha }}.{\hat {\underline {p}}}+\beta m\right)\Psi \\&-{\mathfrak {i}}{{\dot {\Psi }}^{+}}\Psi \quad ={{\left({\underline {p}}\Psi \right)}^{+}}{\underline {\alpha }}\Psi +m{{\Psi }^{+}}\beta \Psi \\&------------------------\\&{\mathfrak {i}}{{\partial }_{t}}\underbrace {\left({{\Psi }^{+}}\Psi \right)} _{:=\rho }\quad ={{\Psi }^{+}}{\underline {\alpha }}\left({\underline {p}}\Psi \right)-{{\left({\underline {p}}\Psi \right)}^{+}}{\underline {\alpha }}\Psi \\&\quad =-{\mathfrak {i}}\sum \limits _{k}{{{\Psi }^{+}}{{\alpha }_{k}}\left({{\partial }_{k}}\Psi \right)-{{\left({{\partial }_{k}}\Psi \right)}^{+}}{{\alpha }_{k}}\Psi }\\&\quad =-{\mathfrak {i}}\sum \limits _{k}{{{\partial }_{k}}\underbrace {\left({{\Psi }^{+}}{{\alpha }_{k}}\Psi \right)} _{:={{j}_{k}}}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.347 KB / 664 B) :

iΨ+Ψ˙=Ψ+(α_.p_^+βm)ΨiΨ˙+Ψ=(p_Ψ)+α_Ψ+mΨ+βΨit(Ψ+Ψ):=ρ=Ψ+α_(p_Ψ)(p_Ψ)+α_Ψ=ikΨ+αk(kΨ)(kΨ)+αkΨ=ikk(Ψ+αkΨ):=jk
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mspace width="1em"></mspace><mo>=</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03B1;</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><munder><mi>p</mi><mo>_</mo></munder></mrow><mo>^</mo></mover></mrow></mrow><mo>+</mo><mi>&#x03B2;</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mspace width="1em"></mspace><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>p</mi><mo>_</mo></munder></mrow><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="ORD"><munder><mi>&#x03B1;</mi><mo>_</mo></munder></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>+</mo><mi>m</mi><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi>&#x03B2;</mi><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo><mo>&#x2212;</mo></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>:</mi><mo>=</mo><mi>&#x03C1;</mi></mrow></mrow></munder><mspace width="1em"></mspace><mo>=</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="ORD"><munder><mi>&#x03B1;</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>p</mi><mo>_</mo></munder></mrow><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>p</mi><mo>_</mo></munder></mrow><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="ORD"><munder><mi>&#x03B1;</mi><mo>_</mo></munder></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>:</mi><mo>=</mo><msub><mi>j</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></munder></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Weitere Eigenschaften der Dirac-Gleichung page

Identifiers

  • i
  • Ψ
  • Ψ˙
  • Ψ
  • α_
  • p_^
  • β
  • m
  • Ψ
  • i
  • Ψ˙
  • Ψ
  • p_
  • Ψ
  • α_
  • Ψ
  • m
  • Ψ
  • β
  • Ψ
  • i
  • t
  • Ψ
  • Ψ
  • ρ
  • Ψ
  • α_
  • p_
  • Ψ
  • p_
  • Ψ
  • α_
  • Ψ
  • i
  • k
  • Ψ
  • αk
  • k
  • Ψ
  • k
  • Ψ
  • αk
  • Ψ
  • i
  • k
  • k
  • Ψ
  • αk
  • Ψ
  • jk

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results