Jump to navigation Jump to search

General

Display information for equation id:math.2674.3 on revision:2674

* Page found: Dirac-Gleichung und Spin: nichtrelativistischer Grenzfall (eq math.2674.3)

(force rerendering)

Occurrences on the following pages:

Hash: 45a7e93c58e34f50852530ff5e44a541

TeX (original user input):

\mathfrak{i} {{\partial }_{t}}\left( \begin{align}

& \varphi  \\

& \chi  \\

\end{align} \right)=\left( \begin{align}

& \underline{\sigma }\left( \underline{\hat{p}}-e\underline{A} \right)\chi  \\

& \underline{\sigma }\left( \underline{\hat{p}}-e\underline{A} \right)\varphi  \\

\end{align} \right)+e\phi \left( \begin{align}

& \varphi  \\

& \chi  \\

\end{align} \right)-2m{{c}^{2}}\left( \begin{align}

& 0 \\

& \chi  \\

\end{align} \right)

TeX (checked):

{\mathfrak {i}}{{\partial }_{t}}\left({\begin{aligned}&\varphi \\&\chi \\\end{aligned}}\right)=\left({\begin{aligned}&{\underline {\sigma }}\left({\underline {\hat {p}}}-e{\underline {A}}\right)\chi \\&{\underline {\sigma }}\left({\underline {\hat {p}}}-e{\underline {A}}\right)\varphi \\\end{aligned}}\right)+e\phi \left({\begin{aligned}&\varphi \\&\chi \\\end{aligned}}\right)-2m{{c}^{2}}\left({\begin{aligned}&0\\&\chi \\\end{aligned}}\right)

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.206 KB / 470 B) :

it(φχ)=(σ_(p^_eA_)χσ_(p^_eA_)φ)+eϕ(φχ)2mc2(0χ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03C6;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03C7;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>^</mo></mover></mrow></mrow><mo>_</mo></munder></mrow><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><munder><mi>A</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03C7;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>^</mo></mover></mrow></mrow><mo>_</mo></munder></mrow><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><munder><mi>A</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03C6;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>e</mi><mi>&#x03D5;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03C6;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03C7;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mn>2</mn><mi>m</mi><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03C7;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dirac-Gleichung und Spin: nichtrelativistischer Grenzfall page

Identifiers

  • i
  • t
  • φ
  • χ
  • σ_
  • p^_
  • e
  • A_
  • χ
  • σ_
  • p^_
  • e
  • A_
  • φ
  • e
  • ϕ
  • φ
  • χ
  • m
  • c
  • χ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results