Jump to navigation Jump to search

General

Display information for equation id:math.2665.40 on revision:2665

* Page found: Klein Gordon im (Vektor)Potential, Eichinvarianz (eq math.2665.40)

(force rerendering)

Occurrences on the following pages:

Hash: a9e7d06cc684e8440875a1b7997dc286

TeX (original user input):

\mathfrak{i} {{\partial }_{t}}\Psi =\frac{1}{2m}{{\left( \frac{{\underline{\nabla }}}{\mathfrak{i} } \right)}^{2}}\Psi \to \text{nun }\mathfrak{i} {{\partial }_{t}}\Psi +\alpha \phi \Psi =\frac{1}{2m}{{\left( \frac{{\underline{\nabla }}}{\mathfrak{i} }+\alpha \underline{A} \right)}^{2}}\Psi

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.323 KB / 401 B) :

itΨ=12m(_i)2Ψnun itΨ+αϕΨ=12m(_i+αA_)2Ψ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="ORD"><mtext>nun&#xA0;</mtext></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo>+</mo><mi>&#x03B1;</mi><mi>&#x03D5;</mi><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow></mrow></mfrac></mrow><mo>+</mo><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><munder><mi>A</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon im (Vektor)Potential, Eichinvarianz page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results