Jump to navigation Jump to search

General

Display information for equation id:math.2664.31 on revision:2664

* Page found: Klein Gordon im (Vektor)Potential, Eichinvarianz (eq math.2664.31)

(force rerendering)

Occurrences on the following pages:

Hash: 3697350916e03c9fd438ca58c8a7a958

TeX (original user input):

\begin{align}

& {{{\underline{D}}}_{\varphi }}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad \underline{D}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} \nabla \varphi \left( \underline{x},t \right) \\

& {{D}_{0}}={{\partial }_{t}}+{{g}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad {{D}^{0}}={{\partial }_{t}}+{{g}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} {{\partial }_{t}}\varphi \left( \underline{x},t \right) \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\underline {D}}_{\varphi }}={\underline {\nabla }}+{{\underline {f}}_{\varphi }}\left({\underline {x}},t\right)\quad \leftrightarrow \quad {\underline {D}}={\underline {\nabla }}+{{\underline {f}}_{\varphi }}\left({\underline {x}},t\right)+{\mathfrak {i}}\nabla \varphi \left({\underline {x}},t\right)\\&{{D}_{0}}={{\partial }_{t}}+{{g}_{\varphi }}\left({\underline {x}},t\right)\quad \leftrightarrow \quad {{D}^{0}}={{\partial }_{t}}+{{g}_{\varphi }}\left({\underline {x}},t\right)+{\mathfrak {i}}{{\partial }_{t}}\varphi \left({\underline {x}},t\right)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.393 KB / 481 B) :

D_φ=_+f_φ(x_,t)D_=_+f_φ(x_,t)+iφ(x_,t)D0=t+gφ(x_,t)D0=t+gφ(x_,t)+itφ(x_,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><munder><mi>D</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mo>+</mo><msub><mrow data-mjx-texclass="ORD"><munder><mi>f</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mo>&#x2194;</mo><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><munder><mi>D</mi><mo>_</mo></munder></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mo>+</mo><msub><mrow data-mjx-texclass="ORD"><munder><mi>f</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi mathvariant="normal">&#x2207;</mi><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>D</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mo>&#x2194;</mo><mspace width="1em"></mspace><msup><mi>D</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon im (Vektor)Potential, Eichinvarianz page

Identifiers

  • D_φ
  • f_φ
  • x_
  • t
  • D_
  • f_φ
  • x_
  • t
  • i
  • φ
  • x_
  • t
  • D0
  • t
  • gφ
  • x_
  • t
  • D
  • t
  • gφ
  • x_
  • t
  • i
  • t
  • φ
  • x_
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results