Jump to navigation Jump to search

General

Display information for equation id:math.2663.45 on revision:2663

* Page found: Klein Gordon im (Vektor)Potential, Eichinvarianz (eq math.2663.45)

(force rerendering)

Occurrences on the following pages:

Hash: 88a9f0ebf6566d11db26a878e179b92e

TeX (original user input):

\begin{align}

& \square =\partial _{t}^{2}-{{{\underline{\nabla }}}^{2}}\quad \to {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi  \right)}^{2}}-{{\left( \underline{\nabla }-\frac{\mathfrak{i} e}{\hbar }\underline{A} \right)}^{2}} \\

& \left( \square +{{m}^{2}} \right)\Psi =0\quad \to \left\{ {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi  \right)}^{2}}-{{\left( \underline{\nabla }-\mathfrak{i} e\underline{A} \right)}^{2}}+{{m}^{2}} \right\}\Psi =0\quad \left( \hbar =c=1 \right) \\

\end{align}

TeX (checked):

{\begin{aligned}&\square =\partial _{t}^{2}-{{\underline {\nabla }}^{2}}\quad \to {{\left({{\partial }_{t}}+{\mathfrak {i}}e\varphi \right)}^{2}}-{{\left({\underline {\nabla }}-{\frac {{\mathfrak {i}}e}{\hbar }}{\underline {A}}\right)}^{2}}\\&\left(\square +{{m}^{2}}\right)\Psi =0\quad \to \left\{{{\left({{\partial }_{t}}+{\mathfrak {i}}e\varphi \right)}^{2}}-{{\left({\underline {\nabla }}-{\mathfrak {i}}e{\underline {A}}\right)}^{2}}+{{m}^{2}}\right\}\Psi =0\quad \left(\hbar =c=1\right)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.627 KB / 579 B) :

=t2_2(t+ieφ)2(_ieA_)2(+m2)Ψ=0{(t+ieφ)2(_ieA_)2+m2}Ψ=0(=c=1)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x25FB;</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mspace width="1em"></mspace><mo accent="false">&#x2192;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>e</mi><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>e</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><munder><mi>A</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x25FB;</mi><mo>+</mo><msup><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>e</mi><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>e</mi><mrow data-mjx-texclass="ORD"><munder><mi>A</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi data-mjx-alternate="1">&#x210F;</mi><mo>=</mo><mi>c</mi><mo>=</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon im (Vektor)Potential, Eichinvarianz page

Identifiers

  • t
  • t
  • i
  • e
  • φ
  • i
  • e
  • A_
  • m
  • Ψ
  • t
  • i
  • e
  • φ
  • i
  • e
  • A_
  • m
  • Ψ
  • c

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results