Jump to navigation Jump to search

General

Display information for equation id:math.2662.31 on revision:2662

* Page found: Klein Gordon im (Vektor)Potential, Eichinvarianz (eq math.2662.31)

(force rerendering)

Occurrences on the following pages:

Hash: 3697350916e03c9fd438ca58c8a7a958

TeX (original user input):

\begin{align}

& {{{\underline{D}}}_{\varphi }}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad \underline{D}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} \nabla \varphi \left( \underline{x},t \right) \\

& {{D}_{0}}={{\partial }_{t}}+{{g}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad {{D}^{0}}={{\partial }_{t}}+{{g}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} {{\partial }_{t}}\varphi \left( \underline{x},t \right) \\

\end{align}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.393 KB / 481 B) :

D_φ=_+f_φ(x_,t)D_=_+f_φ(x_,t)+iφ(x_,t)D0=t+gφ(x_,t)D0=t+gφ(x_,t)+itφ(x_,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><munder><mi>D</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mo>+</mo><msub><mrow data-mjx-texclass="ORD"><munder><mi>f</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mo>&#x2194;</mo><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><munder><mi>D</mi><mo>_</mo></munder></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mo>+</mo><msub><mrow data-mjx-texclass="ORD"><munder><mi>f</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi mathvariant="normal">&#x2207;</mi><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>D</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mo>&#x2194;</mo><mspace width="1em"></mspace><msup><mi>D</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon im (Vektor)Potential, Eichinvarianz page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results