Jump to navigation Jump to search

General

Display information for equation id:math.2660.50 on revision:2660

* Page found: Klein Gordon im (Vektor)Potential, Eichinvarianz (eq math.2660.50)

(force rerendering)

Occurrences on the following pages:

Hash: 566baedafbc480b2be7c3fae83506342

TeX (original user input):

E=\pm {{m}_{0}}\left( 1-\frac{{{Z}^{2}}{{\alpha }^{2}}}{2{{n}^{2}}}+\frac{{{Z}^{2}}{{\alpha }^{4}}}{{{n}^{4}}}\left[ \frac{3}{8}-\frac{n}{2l+1} \right]+O\left( {{z}^{6}}{{\alpha }^{6}} \right) \right)

TeX (checked):

E=\pm {{m}_{0}}\left(1-{\frac {{{Z}^{2}}{{\alpha }^{2}}}{2{{n}^{2}}}}+{\frac {{{Z}^{2}}{{\alpha }^{4}}}{{n}^{4}}}\left[{\frac {3}{8}}-{\frac {n}{2l+1}}\right]+O\left({{z}^{6}}{{\alpha }^{6}}\right)\right)

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (1.948 KB / 377 B) :

E=±m0(1Z2α22n2+Z2α4n4[38n2l+1]+O(z6α6))
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>E</mi><mo>=</mo><mo>&#x00B1;</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>Z</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>Z</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>8</mn></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>+</mo><mi>O</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>z</mi><mrow data-mjx-texclass="ORD"><mn>6</mn></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mn>6</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon im (Vektor)Potential, Eichinvarianz page

Identifiers

  • E
  • m0
  • Z
  • α
  • n
  • Z
  • α
  • n
  • n
  • l
  • O
  • z
  • α

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results