Jump to navigation
Jump to search
General
Display information for equation id:math.2615.11 on revision:2615
* Page found: Klein Gordon Gleichung (eq math.2615.11)
(force rerendering)Occurrences on the following pages:
Hash: a6fec2ca89db78f3d1726ee1652327ff
TeX (original user input):
\begin{align}
& \int{\rho \left( \underline{x},t \right){{d}^{d}}\underline{x}}={{\left( \frac{1}{2\pi } \right)}^{d}}\frac{1}{m}\int{\int{\int{{{\varphi }^{*}}\left( {\underline{k}} \right)\varphi \left( {{\underline{k}}'} \right){{e}^{i\left( \underline{k}-{\underline{k}}' \right)\underline{x}}}\omega \left( {{\underline{k}}'} \right){{d}^{d}}x}{{d}^{d}}k}{{d}^{d}}{k}'} \\
& =\frac{1}{m}\int{\omega \left( {\underline{k}} \right){{\left| \varphi \left( {\underline{k}} \right) \right|}^{2}}{{d}^{d}}\underline{k}}>0
\end{align}
TeX (checked):
{\begin{aligned}&\int {\rho \left({\underline {x}},t\right){{d}^{d}}{\underline {x}}}={{\left({\frac {1}{2\pi }}\right)}^{d}}{\frac {1}{m}}\int {\int {\int {{{\varphi }^{*}}\left({\underline {k}}\right)\varphi \left({{\underline {k}}'}\right){{e}^{i\left({\underline {k}}-{\underline {k}}'\right){\underline {x}}}}\omega \left({{\underline {k}}'}\right){{d}^{d}}x}{{d}^{d}}k}{{d}^{d}}{k}'}\\&={\frac {1}{m}}\int {\omega \left({\underline {k}}\right){{\left|\varphi \left({\underline {k}}\right)\right|}^{2}}{{d}^{d}}{\underline {k}}}>0\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (4.167 KB / 562 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mi>ρ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow></mrow><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>π</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msup><mi>φ</mi><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>φ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msup><msup><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>′</mo></msup><mo>′</mo></msup></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>−</mo><msup><msup><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>′</mo></msup><mo>′</mo></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow></mrow></mrow></msup><mi>ω</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msup><msup><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>′</mo></msup><mo>′</mo></msup></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi></mrow><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>k</mi></mrow><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><msup><msup><mi>k</mi><mo>′</mo></msup><mo>′</mo></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mi>ω</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>φ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow></mrow><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Klein Gordon Gleichung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results