Jump to navigation Jump to search

General

Display information for equation id:math.2565.25 on revision:2565

* Page found: Das Photonengas im Strahlungshohlraum (eq math.2565.25)

(force rerendering)

Occurrences on the following pages:

Hash: ab3df8d1c8c7b790a36593aa2db9b6cb

TeX (original user input):

\begin{align}

& p=kT{{\left( \frac{\partial }{\partial V}\ln Z \right)}_{T}}=-kT\sum\limits_{\nu }^{{}}{{}}\frac{\frac{h}{kT}\left( \frac{\partial \nu }{\partial V} \right){{e}^{-\frac{h\nu }{kT}}}}{\left( 1-{{e}^{-\frac{h\nu }{kT}}} \right)}=kT\sum\limits_{\nu }^{{}}{{}}\frac{\frac{h}{kT}\frac{\nu }{3V}{{e}^{-\frac{h\nu }{kT}}}}{\left( 1-{{e}^{-\frac{h\nu }{kT}}} \right)}=\frac{1}{3V}\sum\limits_{\nu }^{{}}{{}}\frac{h\nu {{e}^{-\frac{h\nu }{kT}}}}{\left( 1-{{e}^{-\frac{h\nu }{kT}}} \right)}= \\

& \Rightarrow p=\frac{1}{3V}\sum\limits_{\nu }^{{}}{{}}h\nu \left\langle {{N}_{\nu }} \right\rangle  \\

& p=\frac{1}{3}\frac{U}{V} \\

\end{align}

TeX (checked):

{\begin{aligned}&p=kT{{\left({\frac {\partial }{\partial V}}\ln Z\right)}_{T}}=-kT\sum \limits _{\nu }^{}{}{\frac {{\frac {h}{kT}}\left({\frac {\partial \nu }{\partial V}}\right){{e}^{-{\frac {h\nu }{kT}}}}}{\left(1-{{e}^{-{\frac {h\nu }{kT}}}}\right)}}=kT\sum \limits _{\nu }^{}{}{\frac {{\frac {h}{kT}}{\frac {\nu }{3V}}{{e}^{-{\frac {h\nu }{kT}}}}}{\left(1-{{e}^{-{\frac {h\nu }{kT}}}}\right)}}={\frac {1}{3V}}\sum \limits _{\nu }^{}{}{\frac {h\nu {{e}^{-{\frac {h\nu }{kT}}}}}{\left(1-{{e}^{-{\frac {h\nu }{kT}}}}\right)}}=\\&\Rightarrow p={\frac {1}{3V}}\sum \limits _{\nu }^{}{}h\nu \left\langle {{N}_{\nu }}\right\rangle \\&p={\frac {1}{3}}{\frac {U}{V}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.574 KB / 609 B) :

p=kT(VlnZ)T=kTνhkT(νV)ehνkT(1ehνkT)=kTνhkTν3VehνkT(1ehνkT)=13VνhνehνkT(1ehνkT)=p=13VνhνNνp=13UV
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>p</mi><mo>=</mo><mi>k</mi><mi>T</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mi>ln</mi><mo>&#x2061;</mo><mi>Z</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mi>k</mi><mi>T</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>h</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mi>k</mi><mi>T</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>h</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mi>V</mi></mrow></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mi>V</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>p</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mi>V</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>h</mi><mi>&#x03BD;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>p</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>U</mi></mrow><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Photonengas im Strahlungshohlraum page

Identifiers

  • p
  • k
  • T
  • V
  • Z
  • T
  • k
  • T
  • ν
  • h
  • k
  • T
  • ν
  • V
  • e
  • h
  • ν
  • k
  • T
  • e
  • h
  • ν
  • k
  • T
  • k
  • T
  • ν
  • h
  • k
  • T
  • ν
  • V
  • e
  • h
  • ν
  • k
  • T
  • e
  • h
  • ν
  • k
  • T
  • V
  • ν
  • h
  • ν
  • e
  • h
  • ν
  • k
  • T
  • e
  • h
  • ν
  • k
  • T
  • p
  • V
  • ν
  • h
  • ν
  • Nν
  • p
  • U
  • V

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results