Jump to navigation Jump to search

General

Display information for equation id:math.2565.20 on revision:2565

* Page found: Das Photonengas im Strahlungshohlraum (eq math.2565.20)

(force rerendering)

Occurrences on the following pages:

Hash: 75d31515ac7f2b894fcacc28d9157052

TeX (original user input):

\begin{align}

& U\left( T \right):=V\int_{{}}^{{}}{{}}d\nu \frac{1}{V}D\left( \nu  \right)h\nu \left\langle {{N}_{\nu }} \right\rangle =\frac{8\pi hV}{{{c}^{3}}}\int_{0}^{\infty }{{}}d\nu \frac{{{\nu }^{3}}}{{{e}^{\frac{h\nu }{kT}}}-1} \\

& =\frac{8\pi V}{{{\left( ch \right)}^{3}}}{{\left( kT \right)}^{4}}\int_{0}^{\infty }{{}}dx\frac{{{x}^{3}}}{{{e}^{x}}-1} \\

& \int_{0}^{\infty }{{}}dx\frac{{{x}^{3}}}{{{e}^{x}}-1}=\frac{{{\pi }^{4}}}{15} \\

& U\left( T \right)=\frac{8{{\pi }^{5}}V}{15{{\left( ch \right)}^{3}}}{{\left( kT \right)}^{4}} \\

\end{align}

TeX (checked):

{\begin{aligned}&U\left(T\right):=V\int _{}^{}{}d\nu {\frac {1}{V}}D\left(\nu \right)h\nu \left\langle {{N}_{\nu }}\right\rangle ={\frac {8\pi hV}{{c}^{3}}}\int _{0}^{\infty }{}d\nu {\frac {{\nu }^{3}}{{{e}^{\frac {h\nu }{kT}}}-1}}\\&={\frac {8\pi V}{{\left(ch\right)}^{3}}}{{\left(kT\right)}^{4}}\int _{0}^{\infty }{}dx{\frac {{x}^{3}}{{{e}^{x}}-1}}\\&\int _{0}^{\infty }{}dx{\frac {{x}^{3}}{{{e}^{x}}-1}}={\frac {{\pi }^{4}}{15}}\\&U\left(T\right)={\frac {8{{\pi }^{5}}V}{15{{\left(ch\right)}^{3}}}}{{\left(kT\right)}^{4}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.291 KB / 634 B) :

U(T):=Vdν1VD(ν)hνNν=8πhVc30dνν3ehνkT1=8πV(ch)3(kT)40dxx3ex10dxx3ex1=π415U(T)=8π5V15(ch)3(kT)4
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>U</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>:</mi><mo>=</mo><mi>V</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></mfrac></mrow><mi>D</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BD;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>h</mi><mi>&#x03BD;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>h</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mi>h</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C0;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>5</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>U</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><msup><mi>&#x03C0;</mi><mrow data-mjx-texclass="ORD"><mn>5</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>5</mn><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mi>h</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Photonengas im Strahlungshohlraum page

Identifiers

  • U
  • T
  • V
  • ν
  • V
  • D
  • ν
  • h
  • ν
  • Nν
  • π
  • h
  • V
  • c
  • ν
  • ν
  • e
  • h
  • ν
  • k
  • T
  • π
  • V
  • c
  • h
  • k
  • T
  • x
  • x
  • e
  • x
  • x
  • x
  • e
  • x
  • π
  • U
  • T
  • π
  • V
  • c
  • h
  • k
  • T

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results