Jump to navigation Jump to search

General

Display information for equation id:math.2565.12 on revision:2565

* Page found: Das Photonengas im Strahlungshohlraum (eq math.2565.12)

(force rerendering)

Occurrences on the following pages:

Hash: d54c52deb59a6f4443e3acc3c8c52d8d

TeX (original user input):

\begin{align}

& \bar{N}=2\sum\limits_{{\bar{q}}}^{{}}{{}}\left\langle {{N}_{q}} \right\rangle  \\

& \Rightarrow \bar{N}=\frac{8\pi V}{{{\left( 2\pi  \right)}^{3}}{{c}^{3}}}\int_{0}^{\infty }{{}}d\omega {{\omega }^{2}}\left\langle N(\omega ) \right\rangle =\frac{8\pi V}{{{c}^{3}}}\int_{0}^{\infty }{{}}d\nu {{\nu }^{2}}\left\langle {{N}_{\nu }} \right\rangle  \\

& \bar{N}:=\int_{0}^{\infty }{{}}d\nu D\left( \nu  \right)\left\langle {{N}_{\nu }} \right\rangle  \\

& \Rightarrow D\left( \nu  \right)=\frac{8\pi V}{{{c}^{3}}}{{\nu }^{2}} \\

& \bar{N}=\frac{8\pi V}{{{c}^{3}}}\int_{0}^{\infty }{{}}d\nu {{\nu }^{2}}\left\langle {{N}_{\nu }} \right\rangle =\int_{0}^{\infty }{{}}d\nu D\left( \nu  \right)\left\langle {{N}_{\nu }} \right\rangle  \\

& U=\int_{0}^{\infty }{{}}d\nu D\left( \nu  \right)h\nu \left\langle {{N}_{\nu }} \right\rangle  \\

\end{align}

TeX (checked):

{\begin{aligned}&{\bar {N}}=2\sum \limits _{\bar {q}}^{}{}\left\langle {{N}_{q}}\right\rangle \\&\Rightarrow {\bar {N}}={\frac {8\pi V}{{{\left(2\pi \right)}^{3}}{{c}^{3}}}}\int _{0}^{\infty }{}d\omega {{\omega }^{2}}\left\langle N(\omega )\right\rangle ={\frac {8\pi V}{{c}^{3}}}\int _{0}^{\infty }{}d\nu {{\nu }^{2}}\left\langle {{N}_{\nu }}\right\rangle \\&{\bar {N}}:=\int _{0}^{\infty }{}d\nu D\left(\nu \right)\left\langle {{N}_{\nu }}\right\rangle \\&\Rightarrow D\left(\nu \right)={\frac {8\pi V}{{c}^{3}}}{{\nu }^{2}}\\&{\bar {N}}={\frac {8\pi V}{{c}^{3}}}\int _{0}^{\infty }{}d\nu {{\nu }^{2}}\left\langle {{N}_{\nu }}\right\rangle =\int _{0}^{\infty }{}d\nu D\left(\nu \right)\left\langle {{N}_{\nu }}\right\rangle \\&U=\int _{0}^{\infty }{}d\nu D\left(\nu \right)h\nu \left\langle {{N}_{\nu }}\right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.454 KB / 661 B) :

N¯=2q¯NqN¯=8πV(2π)3c30dωω2N(ω)=8πVc30dνν2NνN¯:=0dνD(ν)NνD(ν)=8πVc3ν2N¯=8πVc30dνν2Nν=0dνD(ν)NνU=0dνD(ν)hνNν
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>2</mn><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>q</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>N</mi><mo stretchy="false">(</mo><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><mi>D</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BD;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>D</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BD;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><mi>D</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BD;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>U</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><mi>D</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BD;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>h</mi><mi>&#x03BD;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Photonengas im Strahlungshohlraum page

Identifiers

  • N¯
  • q¯
  • Nq
  • N¯
  • π
  • V
  • π
  • c
  • ω
  • ω
  • N
  • ω
  • π
  • V
  • c
  • ν
  • ν
  • Nν
  • N¯
  • ν
  • D
  • ν
  • Nν
  • D
  • ν
  • π
  • V
  • c
  • ν
  • N¯
  • π
  • V
  • c
  • ν
  • ν
  • Nν
  • ν
  • D
  • ν
  • Nν
  • U
  • ν
  • D
  • ν
  • h
  • ν
  • Nν

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results