Jump to navigation Jump to search

General

Display information for equation id:math.2562.19 on revision:2562

* Page found: Das Photonengas im Strahlungshohlraum (eq math.2562.19)

(force rerendering)

Occurrences on the following pages:

Hash: 4b7fd3ee8c4338d32429996eb24edf56

TeX (original user input):

\begin{align}

& h\nu >>kT \\

& \frac{\partial u\left( \nu ,T \right)}{\partial \nu }=0=\frac{\partial }{\partial \nu }\frac{8\pi h}{{{c}^{3}}}\frac{{{\nu }^{3}}}{{{e}^{\frac{h\nu }{kT}}}}=\frac{8\pi h}{{{c}^{3}}}\frac{\partial }{\partial \nu }\left( {{\nu }^{3}}{{e}^{-\frac{h\nu }{kT}}} \right)=\frac{8\pi h}{{{c}^{3}}}\left( 3{{\nu }^{2}}{{e}^{-\frac{h\nu }{kT}}}-\frac{h}{kT}{{\nu }^{3}}{{e}^{-\frac{h\nu }{kT}}} \right) \\

& \Rightarrow 3{{\nu }^{2}}{{e}^{-\frac{h\nu }{kT}}}=\frac{h}{kT}{{\nu }^{3}}{{e}^{-\frac{h\nu }{kT}}} \\

& \Rightarrow \frac{3kT}{h}={{\nu }_{\max .}} \\

\end{align}

TeX (checked):

{\begin{aligned}&h\nu >>kT\\&{\frac {\partial u\left(\nu ,T\right)}{\partial \nu }}=0={\frac {\partial }{\partial \nu }}{\frac {8\pi h}{{c}^{3}}}{\frac {{\nu }^{3}}{{e}^{\frac {h\nu }{kT}}}}={\frac {8\pi h}{{c}^{3}}}{\frac {\partial }{\partial \nu }}\left({{\nu }^{3}}{{e}^{-{\frac {h\nu }{kT}}}}\right)={\frac {8\pi h}{{c}^{3}}}\left(3{{\nu }^{2}}{{e}^{-{\frac {h\nu }{kT}}}}-{\frac {h}{kT}}{{\nu }^{3}}{{e}^{-{\frac {h\nu }{kT}}}}\right)\\&\Rightarrow 3{{\nu }^{2}}{{e}^{-{\frac {h\nu }{kT}}}}={\frac {h}{kT}}{{\nu }^{3}}{{e}^{-{\frac {h\nu }{kT}}}}\\&\Rightarrow {\frac {3kT}{h}}={{\nu }_{\max .}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.926 KB / 563 B) :

hν>>kTu(ν,T)ν=0=ν8πhc3ν3ehνkT=8πhc3ν(ν3ehνkT)=8πhc3(3ν2ehνkThkTν3ehνkT)3ν2ehνkT=hkTν3ehνkT3kTh=νmax.
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>h</mi><mi>&#x03BD;</mi><mo>&gt;</mo><mo>&gt;</mo><mi>k</mi><mi>T</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>u</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BD;</mi><mo>,</mo><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03BD;</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mn>0</mn><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03BD;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>h</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>h</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03BD;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>h</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>3</mn><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>h</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mn>3</mn><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>h</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>h</mi><mi>&#x03BD;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mi>k</mi><mi>T</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>h</mi></mrow></mfrac></mrow><mo>=</mo><msub><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>max</mi><mo>&#x2061;</mo><mo>.</mo></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Photonengas im Strahlungshohlraum page

Identifiers

  • h
  • ν
  • k
  • T
  • u
  • ν
  • T
  • ν
  • ν
  • π
  • h
  • c
  • ν
  • e
  • h
  • ν
  • k
  • T
  • π
  • h
  • c
  • ν
  • ν
  • e
  • h
  • ν
  • k
  • T
  • π
  • h
  • c
  • ν
  • e
  • h
  • ν
  • k
  • T
  • h
  • k
  • T
  • ν
  • e
  • h
  • ν
  • k
  • T
  • ν
  • e
  • h
  • ν
  • k
  • T
  • h
  • k
  • T
  • ν
  • e
  • h
  • ν
  • k
  • T
  • k
  • T
  • h
  • ν

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results