Jump to navigation Jump to search

General

Display information for equation id:math.2562.11 on revision:2562

* Page found: Das Photonengas im Strahlungshohlraum (eq math.2562.11)

(force rerendering)

Occurrences on the following pages:

Hash: adb7628bc3d0637e94a039bbd3c97dff

TeX (original user input):

\begin{align}

& 2\sum\limits_{{\bar{q}}}^{{}}{{}}->\frac{2V}{{{h}^{3}}}\int_{{}}^{{}}{{}}{{d}^{3}}\left( \hbar \bar{q} \right)=\frac{8\pi V}{{{\left( 2\pi  \right)}^{3}}}\int_{0}^{\infty }{{}}dq{{q}^{2}}=\frac{8\pi V}{{{\left( 2\pi  \right)}^{3}}{{c}^{3}}}\int_{0}^{\infty }{{}}d\omega {{\omega }^{2}} \\

& \omega =cq \\

& \omega =2\pi \nu  \\

& \Rightarrow \frac{8\pi V}{{{\left( 2\pi  \right)}^{3}}{{c}^{3}}}\int_{0}^{\infty }{{}}d\omega {{\omega }^{2}}=\frac{8\pi V}{{{c}^{3}}}\int_{0}^{\infty }{{}}d\nu {{\nu }^{2}} \\

\end{align}

TeX (checked):

{\begin{aligned}&2\sum \limits _{\bar {q}}^{}{}->{\frac {2V}{{h}^{3}}}\int _{}^{}{}{{d}^{3}}\left(\hbar {\bar {q}}\right)={\frac {8\pi V}{{\left(2\pi \right)}^{3}}}\int _{0}^{\infty }{}dq{{q}^{2}}={\frac {8\pi V}{{{\left(2\pi \right)}^{3}}{{c}^{3}}}}\int _{0}^{\infty }{}d\omega {{\omega }^{2}}\\&\omega =cq\\&\omega =2\pi \nu \\&\Rightarrow {\frac {8\pi V}{{{\left(2\pi \right)}^{3}}{{c}^{3}}}}\int _{0}^{\infty }{}d\omega {{\omega }^{2}}={\frac {8\pi V}{{c}^{3}}}\int _{0}^{\infty }{}d\nu {{\nu }^{2}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.67 KB / 591 B) :

2q¯>2Vh3d3(q¯)=8πV(2π)30dqq2=8πV(2π)3c30dωω2ω=cqω=2πν8πV(2π)3c30dωω2=8πVc30dνν2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mn>2</mn><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mo>&#x2212;</mo><mo>&gt;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>q</mi><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03C9;</mi><mo>=</mo><mi>c</mi><mi>q</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03C9;</mi><mo>=</mo><mn>2</mn><mi>&#x03C0;</mi><mi>&#x03BD;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03BD;</mi><msup><mi>&#x03BD;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Photonengas im Strahlungshohlraum page

Identifiers

  • q¯
  • V
  • h
  • q¯
  • π
  • V
  • π
  • q
  • q
  • π
  • V
  • π
  • c
  • ω
  • ω
  • ω
  • c
  • q
  • ω
  • π
  • ν
  • π
  • V
  • π
  • c
  • ω
  • ω
  • π
  • V
  • c
  • ν
  • ν

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results