Jump to navigation
Jump to search
General
Display information for equation id:math.2546.86 on revision:2546
* Page found: Das ideale Fermigas (eq math.2546.86)
(force rerendering)Occurrences on the following pages:
Hash: 4f1a407ae9808503b3a81da5e42d56f4
TeX (original user input):
\begin{align}
& {{F}_{s}}\left( \eta \right)=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{{{e}^{y-\eta }}+1} \\
& =\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy{{y}^{s}}\frac{\xi {{e}^{-y}}}{1+\xi {{e}^{-y}}}\approx \frac{1}{\Gamma \left( s+1 \right)}\left[ \xi \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-y}}-{{\xi }^{2}}\int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-2y}}+.... \right] \\
& \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-y}}=\Gamma \left( s+1 \right) \\
& \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-2y}}=\frac{1}{{{2}^{s+1}}}\int_{0}^{\infty }{{}}dz{{z}^{s}}{{e}^{-z}}=\frac{1}{{{2}^{s+1}}}\Gamma \left( s+1 \right) \\
& \Rightarrow {{F}_{s}}\left( \eta \right)\approx \left[ \xi -{{\xi }^{2}}\frac{1}{{{2}^{s+1}}}+.... \right]\approx \left[ \xi -{{\xi }^{2}}\frac{1}{{{2}^{s+1}}} \right]={{e}^{\frac{\mu }{kT}}}\left[ 1-{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{s+1}}} \right] \\
\end{align}
TeX (checked):
{\begin{aligned}&{{F}_{s}}\left(\eta \right)={\frac {1}{\Gamma \left(s+1\right)}}\int _{0}^{\infty }{}dy{\frac {{y}^{s}}{{{e}^{y-\eta }}+1}}\\&={\frac {1}{\Gamma \left(s+1\right)}}\int _{0}^{\infty }{}dy{{y}^{s}}{\frac {\xi {{e}^{-y}}}{1+\xi {{e}^{-y}}}}\approx {\frac {1}{\Gamma \left(s+1\right)}}\left[\xi \int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-y}}-{{\xi }^{2}}\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-2y}}+....\right]\\&\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-y}}=\Gamma \left(s+1\right)\\&\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-2y}}={\frac {1}{{2}^{s+1}}}\int _{0}^{\infty }{}dz{{z}^{s}}{{e}^{-z}}={\frac {1}{{2}^{s+1}}}\Gamma \left(s+1\right)\\&\Rightarrow {{F}_{s}}\left(\eta \right)\approx \left[\xi -{{\xi }^{2}}{\frac {1}{{2}^{s+1}}}+....\right]\approx \left[\xi -{{\xi }^{2}}{\frac {1}{{2}^{s+1}}}\right]={{e}^{\frac {\mu }{kT}}}\left[1-{{e}^{\frac {\mu }{kT}}}{\frac {1}{{2}^{s+1}}}\right]\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (8.758 KB / 712 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>η</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">Γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>−</mo><mi>η</mi></mrow></mrow></msup><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">Γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ξ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>+</mo><mi>ξ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow></mfrac></mrow><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">Γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>ξ</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup><mo>−</mo><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>2</mn><mi>y</mi></mrow></mrow></msup><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup><mo>=</mo><mi mathvariant="normal">Γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>2</mn><mi>y</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>z</mi><msup><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>z</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mi mathvariant="normal">Γ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>η</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>≈</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>ξ</mi><mo>−</mo><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>≈</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>ξ</mi><mo>−</mo><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>−</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das ideale Fermigas page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results