Jump to navigation Jump to search

General

Display information for equation id:math.2546.86 on revision:2546

* Page found: Das ideale Fermigas (eq math.2546.86)

(force rerendering)

Occurrences on the following pages:

Hash: 4f1a407ae9808503b3a81da5e42d56f4

TeX (original user input):

\begin{align}

& {{F}_{s}}\left( \eta  \right)=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{{{e}^{y-\eta }}+1} \\

& =\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy{{y}^{s}}\frac{\xi {{e}^{-y}}}{1+\xi {{e}^{-y}}}\approx \frac{1}{\Gamma \left( s+1 \right)}\left[ \xi \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-y}}-{{\xi }^{2}}\int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-2y}}+.... \right] \\

& \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-y}}=\Gamma \left( s+1 \right) \\

& \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-2y}}=\frac{1}{{{2}^{s+1}}}\int_{0}^{\infty }{{}}dz{{z}^{s}}{{e}^{-z}}=\frac{1}{{{2}^{s+1}}}\Gamma \left( s+1 \right) \\

& \Rightarrow {{F}_{s}}\left( \eta  \right)\approx \left[ \xi -{{\xi }^{2}}\frac{1}{{{2}^{s+1}}}+.... \right]\approx \left[ \xi -{{\xi }^{2}}\frac{1}{{{2}^{s+1}}} \right]={{e}^{\frac{\mu }{kT}}}\left[ 1-{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{s+1}}} \right] \\

\end{align}

TeX (checked):

{\begin{aligned}&{{F}_{s}}\left(\eta \right)={\frac {1}{\Gamma \left(s+1\right)}}\int _{0}^{\infty }{}dy{\frac {{y}^{s}}{{{e}^{y-\eta }}+1}}\\&={\frac {1}{\Gamma \left(s+1\right)}}\int _{0}^{\infty }{}dy{{y}^{s}}{\frac {\xi {{e}^{-y}}}{1+\xi {{e}^{-y}}}}\approx {\frac {1}{\Gamma \left(s+1\right)}}\left[\xi \int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-y}}-{{\xi }^{2}}\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-2y}}+....\right]\\&\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-y}}=\Gamma \left(s+1\right)\\&\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-2y}}={\frac {1}{{2}^{s+1}}}\int _{0}^{\infty }{}dz{{z}^{s}}{{e}^{-z}}={\frac {1}{{2}^{s+1}}}\Gamma \left(s+1\right)\\&\Rightarrow {{F}_{s}}\left(\eta \right)\approx \left[\xi -{{\xi }^{2}}{\frac {1}{{2}^{s+1}}}+....\right]\approx \left[\xi -{{\xi }^{2}}{\frac {1}{{2}^{s+1}}}\right]={{e}^{\frac {\mu }{kT}}}\left[1-{{e}^{\frac {\mu }{kT}}}{\frac {1}{{2}^{s+1}}}\right]\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (8.758 KB / 712 B) :

Fs(η)=1Γ(s+1)0dyyseyη+1=1Γ(s+1)0dyysξey1+ξey1Γ(s+1)[ξ0dyyseyξ20dyyse2y+....]0dyysey=Γ(s+1)0dyyse2y=12s+10dzzsez=12s+1Γ(s+1)Fs(η)[ξξ212s+1+....][ξξ212s+1]=eμkT[1eμkT12s+1]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>&#x2212;</mo><mi>&#x03B7;</mi></mrow></mrow></msup><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BE;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>+</mo><mi>&#x03BE;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>&#x03BE;</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>y</mi></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>2</mn><mi>y</mi></mrow></mrow></msup><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>y</mi></mrow></mrow></msup><mo>=</mo><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>2</mn><mi>y</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>z</mi><msup><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>z</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>&#x03BE;</mi><mo>&#x2212;</mo><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>&#x03BE;</mi><mo>&#x2212;</mo><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Fermigas page

Identifiers

  • Fs
  • η
  • Γ
  • s
  • y
  • y
  • s
  • e
  • y
  • η
  • Γ
  • s
  • y
  • y
  • s
  • ξ
  • e
  • y
  • ξ
  • e
  • y
  • Γ
  • s
  • ξ
  • y
  • y
  • s
  • e
  • y
  • ξ
  • y
  • y
  • s
  • e
  • y
  • y
  • y
  • s
  • e
  • y
  • Γ
  • s
  • y
  • y
  • s
  • e
  • y
  • s
  • z
  • z
  • s
  • e
  • z
  • s
  • Γ
  • s
  • Fs
  • η
  • ξ
  • ξ
  • s
  • ξ
  • ξ
  • s
  • e
  • μ
  • k
  • T
  • e
  • μ
  • k
  • T
  • s

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results