Jump to navigation Jump to search

General

Display information for equation id:math.2540.8 on revision:2540

* Page found: Ununterscheidbarkeit quantenmechanischer Teilchen (eq math.2540.8)

(force rerendering)

Occurrences on the following pages:

Hash: 5727d8585fe7dcc0371bbea8dac70f79

TeX (original user input):

\begin{align}
& {{\left| {{{\hat{P}}}_{ij}}\Psi \left( {{{\bar{x}}}_{1}},{{{\bar{x}}}_{2}} \right) \right|}^{2}}={{\left| \Psi \left( {{{\bar{x}}}_{2}},{{{\bar{x}}}_{1}} \right) \right|}^{2}}={{\left| \Psi \left( {{{\bar{x}}}_{1}},{{{\bar{x}}}_{2}} \right) \right|}^{2}}\Rightarrow {{\left| {{\lambda }_{ij}} \right|}^{2}}=1 \\
& \Rightarrow {{\lambda }_{ij}}=\pm 1 \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\left|{{\hat {P}}_{ij}}\Psi \left({{\bar {x}}_{1}},{{\bar {x}}_{2}}\right)\right|}^{2}}={{\left|\Psi \left({{\bar {x}}_{2}},{{\bar {x}}_{1}}\right)\right|}^{2}}={{\left|\Psi \left({{\bar {x}}_{1}},{{\bar {x}}_{2}}\right)\right|}^{2}}\Rightarrow {{\left|{{\lambda }_{ij}}\right|}^{2}}=1\\&\Rightarrow {{\lambda }_{ij}}=\pm 1\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.163 KB / 450 B) :

|P^ijΨ(x¯1,x¯2)|2=|Ψ(x¯2,x¯1)|2=|Ψ(x¯1,x¯2)|2|λij|2=1λij=±1
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x21D2;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mo>=</mo><mo>&#x00B1;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Ununterscheidbarkeit quantenmechanischer Teilchen page

Identifiers

  • P^ij
  • Ψ
  • x¯1
  • x¯2
  • Ψ
  • x¯2
  • x¯1
  • Ψ
  • x¯1
  • x¯2
  • λij
  • λij

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results