Jump to navigation Jump to search

General

Display information for equation id:math.2531.38 on revision:2531

* Page found: Chemische Reaktionen (eq math.2531.38)

(force rerendering)

Occurrences on the following pages:

Hash: 61b1f0e8ae2472182fe365d984586604

TeX (original user input):

\begin{align}

& \Rightarrow {{Q}_{p}}^{\left( \rho  \right)}={{\left( \frac{\partial H}{\partial {{\xi }_{\rho }}} \right)}_{T,p}}=\frac{\partial }{\partial {{\xi }_{\rho }}}\left( G+TS \right)={{\left( \frac{\partial G}{\partial {{\xi }_{\rho }}} \right)}_{T,p}}+T{{\left( \frac{\partial S}{\partial {{\xi }_{\rho }}} \right)}_{T,p}} \\

& {{\left( \frac{\partial G}{\partial {{\xi }_{\rho }}} \right)}_{T,p}}=-{{A}_{\rho }} \\

& {{\left( \frac{\partial S}{\partial {{\xi }_{\rho }}} \right)}_{T,p}}={{\left( \frac{\partial {{A}_{\rho }}}{\partial T} \right)}_{p,{{\xi }_{\rho }}}} \\

& \Rightarrow {{Q}_{p}}^{\left( \rho  \right)}={{\left( \frac{\partial H}{\partial {{\xi }_{\rho }}} \right)}_{T,p}}=-{{A}_{\rho }}+T{{\left( \frac{\partial {{A}_{\rho }}}{\partial T} \right)}_{p,{{\xi }_{\rho }}}} \\

& \Rightarrow {{Q}_{p}}^{\left( \rho  \right)}={{\left( \frac{\partial H}{\partial {{\xi }_{\rho }}} \right)}_{T,p}}={{T}^{2}}\frac{\partial }{\partial T}{{\left( \frac{{{A}_{\rho }}}{T} \right)}_{p,{{\xi }_{\rho }}}} \\

\end{align}

TeX (checked):

{\begin{aligned}&\Rightarrow {{Q}_{p}}^{\left(\rho \right)}={{\left({\frac {\partial H}{\partial {{\xi }_{\rho }}}}\right)}_{T,p}}={\frac {\partial }{\partial {{\xi }_{\rho }}}}\left(G+TS\right)={{\left({\frac {\partial G}{\partial {{\xi }_{\rho }}}}\right)}_{T,p}}+T{{\left({\frac {\partial S}{\partial {{\xi }_{\rho }}}}\right)}_{T,p}}\\&{{\left({\frac {\partial G}{\partial {{\xi }_{\rho }}}}\right)}_{T,p}}=-{{A}_{\rho }}\\&{{\left({\frac {\partial S}{\partial {{\xi }_{\rho }}}}\right)}_{T,p}}={{\left({\frac {\partial {{A}_{\rho }}}{\partial T}}\right)}_{p,{{\xi }_{\rho }}}}\\&\Rightarrow {{Q}_{p}}^{\left(\rho \right)}={{\left({\frac {\partial H}{\partial {{\xi }_{\rho }}}}\right)}_{T,p}}=-{{A}_{\rho }}+T{{\left({\frac {\partial {{A}_{\rho }}}{\partial T}}\right)}_{p,{{\xi }_{\rho }}}}\\&\Rightarrow {{Q}_{p}}^{\left(\rho \right)}={{\left({\frac {\partial H}{\partial {{\xi }_{\rho }}}}\right)}_{T,p}}={{T}^{2}}{\frac {\partial }{\partial T}}{{\left({\frac {{A}_{\rho }}{T}}\right)}_{p,{{\xi }_{\rho }}}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (7.861 KB / 557 B) :

Qp(ρ)=(Hξρ)T,p=ξρ(G+TS)=(Gξρ)T,p+T(Sξρ)T,p(Gξρ)T,p=Aρ(Sξρ)T,p=(AρT)p,ξρQp(ρ)=(Hξρ)T,p=Aρ+T(AρT)p,ξρQp(ρ)=(Hξρ)T,p=T2T(AρT)p,ξρ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>T</mi><mo>,</mo><mi>p</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>G</mi><mo>+</mo><mi>T</mi><mi>S</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>G</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>T</mi><mo>,</mo><mi>p</mi></mrow></mrow></msub><mo>+</mo><mi>T</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>T</mi><mo>,</mo><mi>p</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>G</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>T</mi><mo>,</mo><mi>p</mi></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>T</mi><mo>,</mo><mi>p</mi></mrow></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>p</mi><mo>,</mo><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>T</mi><mo>,</mo><mi>p</mi></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub><mo>+</mo><mi>T</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>p</mi><mo>,</mo><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>T</mi><mo>,</mo><mi>p</mi></mrow></mrow></msub><mo>=</mo><msup><mi>T</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>p</mi><mo>,</mo><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msub></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Chemische Reaktionen page

Identifiers

  • Qp
  • ρ
  • H
  • ξρ
  • T
  • p
  • ξρ
  • G
  • T
  • S
  • G
  • ξρ
  • T
  • p
  • T
  • S
  • ξρ
  • T
  • p
  • G
  • ξρ
  • T
  • p
  • Aρ
  • S
  • ξρ
  • T
  • p
  • Aρ
  • T
  • p
  • ξρ
  • Qp
  • ρ
  • H
  • ξρ
  • T
  • p
  • Aρ
  • T
  • Aρ
  • T
  • p
  • ξρ
  • Qp
  • ρ
  • H
  • ξρ
  • T
  • p
  • T
  • T
  • Aρ
  • T
  • p
  • ξρ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results