Jump to navigation Jump to search

General

Display information for equation id:math.2524.17 on revision:2524

* Page found: Klassisch- mechanische Gleichgewichtsverteilungen (eq math.2524.17)

(force rerendering)

Occurrences on the following pages:

Hash: 2daa165afeadfb2782b96849660c4cca

TeX (original user input):

\begin{align}

& \frac{\partial \rho \left( \xi ,t \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)+\rho div\dot{\xi } \\

& \rho div\dot{\xi }=0 \\

& \Rightarrow \frac{\partial \rho \left( \xi ,t \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)=\frac{d\rho \left( \xi ,t \right)}{dt}=0 \\

\end{align}

TeX (checked):

{\begin{aligned}&{\frac {\partial \rho \left(\xi ,t\right)}{\partial t}}+div\left(\rho {\dot {\xi }}\right)={\frac {\partial \rho \left(\xi ,t\right)}{\partial t}}+\sum \limits _{k=1}^{3N}{}\left({\frac {\partial \rho \left(\xi ,t\right)}{\partial {{q}_{k}}}}{{\dot {q}}_{k}}+{\frac {\partial \rho \left(\xi ,t\right)}{\partial {{p}_{k}}}}{{\dot {p}}_{k}}\right)+\rho div{\dot {\xi }}\\&\rho div{\dot {\xi }}=0\\&\Rightarrow {\frac {\partial \rho \left(\xi ,t\right)}{\partial t}}+div\left(\rho {\dot {\xi }}\right)={\frac {\partial \rho \left(\xi ,t\right)}{\partial t}}+\sum \limits _{k=1}^{3N}{}\left({\frac {\partial \rho \left(\xi ,t\right)}{\partial {{q}_{k}}}}{{\dot {q}}_{k}}+{\frac {\partial \rho \left(\xi ,t\right)}{\partial {{p}_{k}}}}{{\dot {p}}_{k}}\right)={\frac {d\rho \left(\xi ,t\right)}{dt}}=0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.729 KB / 559 B) :

ρ(ξ,t)t+div(ρξ˙)=ρ(ξ,t)t+k=13N(ρ(ξ,t)qkq˙k+ρ(ξ,t)pkp˙k)+ρdivξ˙ρdivξ˙=0ρ(ξ,t)t+div(ρξ˙)=ρ(ξ,t)t+k=13N(ρ(ξ,t)qkq˙k+ρ(ξ,t)pkp˙k)=dρ(ξ,t)dt=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03BE;</mi><mo>˙</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mi>N</mi></mrow></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>&#x03C1;</mi><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03BE;</mi><mo>˙</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03C1;</mi><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03BE;</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03BE;</mi><mo>˙</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mi>N</mi></mrow></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klassisch- mechanische Gleichgewichtsverteilungen page

Identifiers

  • ρ
  • ξ
  • t
  • t
  • d
  • i
  • v
  • ρ
  • ξ˙
  • ρ
  • ξ
  • t
  • t
  • k
  • N
  • ρ
  • ξ
  • t
  • qk
  • q˙k
  • ρ
  • ξ
  • t
  • pk
  • p˙k
  • ρ
  • d
  • i
  • v
  • ξ˙
  • ρ
  • d
  • i
  • v
  • ξ˙
  • ρ
  • ξ
  • t
  • t
  • d
  • i
  • v
  • ρ
  • ξ˙
  • ρ
  • ξ
  • t
  • t
  • k
  • N
  • ρ
  • ξ
  • t
  • qk
  • q˙k
  • ρ
  • ξ
  • t
  • pk
  • p˙k
  • d
  • ρ
  • ξ
  • t
  • d
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results