Jump to navigation Jump to search

General

Display information for equation id:math.2509.83 on revision:2509

* Page found: Reale Gase (eq math.2509.83)

(force rerendering)

Occurrences on the following pages:

Hash: b7211d5617839e2386c93cf066d26977

TeX (original user input):

\begin{align}

& {{\kappa }_{T}}=-\frac{1}{v}{{\left( \frac{\partial v}{\partial p} \right)}_{T}}\tilde{\ }\frac{1}{{{\left( \frac{\partial p}{\partial v} \right)}_{T}}}=\infty  \\

& \alpha =\frac{1}{v}{{\left( \frac{\partial v}{\partial T} \right)}_{p}}=-\frac{{{\left( \frac{\partial p}{\partial T} \right)}_{v}}}{v{{\left( \frac{\partial p}{\partial v} \right)}_{T}}}=\infty  \\

& {{c}_{p}}={{c}_{v}}+T{{\left( \frac{\partial p}{\partial T} \right)}_{v}}{{\left( \frac{\partial v}{\partial T} \right)}_{p}}=\infty  \\

& {{\left( \frac{\partial v}{\partial T} \right)}_{p}}\to \infty  \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\kappa }_{T}}=-{\frac {1}{v}}{{\left({\frac {\partial v}{\partial p}}\right)}_{T}}{\tilde {\ }}{\frac {1}{{\left({\frac {\partial p}{\partial v}}\right)}_{T}}}=\infty \\&\alpha ={\frac {1}{v}}{{\left({\frac {\partial v}{\partial T}}\right)}_{p}}=-{\frac {{\left({\frac {\partial p}{\partial T}}\right)}_{v}}{v{{\left({\frac {\partial p}{\partial v}}\right)}_{T}}}}=\infty \\&{{c}_{p}}={{c}_{v}}+T{{\left({\frac {\partial p}{\partial T}}\right)}_{v}}{{\left({\frac {\partial v}{\partial T}}\right)}_{p}}=\infty \\&{{\left({\frac {\partial v}{\partial T}}\right)}_{p}}\to \infty \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.091 KB / 540 B) :

κT=1v(vp)T~1(pv)T=α=1v(vT)p=(pT)vv(pv)T=cp=cv+T(pT)v(vT)p=(vT)p
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x03BA;</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>v</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>v</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub></mrow></mfrac></mrow><mo>=</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03B1;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>v</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>v</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>v</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow></msub><mo>+</mo><mi>T</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>v</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow></msub><mo>=</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>v</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow></msub><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Reale Gase page

Identifiers

  • κT
  • v
  • v
  • p
  • T
  • ~
  • p
  • v
  • T
  • α
  • v
  • v
  • T
  • p
  • p
  • T
  • v
  • v
  • p
  • v
  • T
  • cp
  • cv
  • T
  • p
  • T
  • v
  • v
  • T
  • p
  • v
  • T
  • p

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results