Jump to navigation
Jump to search
General
Display information for equation id:math.2473.43 on revision:2473
* Page found: Thermodynamische Potenziale (eq math.2473.43)
(force rerendering)Occurrences on the following pages:
Hash: 9534020730b676b6d0d8f789b638bcc6
TeX (original user input):
\begin{align}
& T{{\left( \frac{\partial S}{\partial T} \right)}_{V}}dT+T{{\left( \frac{\partial S}{\partial V} \right)}_{T}}dV={{\left( \frac{\partial U}{\partial T} \right)}_{V}}dT+\left[ {{\left( \frac{\partial U}{\partial V} \right)}_{T}}+p \right]dV \\
& \Rightarrow {{\left( \frac{\partial S}{\partial T} \right)}_{V}}=\frac{1}{T}{{\left( \frac{\partial U}{\partial T} \right)}_{V}} \\
& {{\left( \frac{\partial S}{\partial V} \right)}_{T}}=\frac{1}{T}{{\left( \frac{\partial U}{\partial V} \right)}_{T}}+\frac{p}{T} \\
& \Rightarrow {{\left( \frac{\partial U}{\partial V} \right)}_{T}}=T{{\left( \frac{\partial S}{\partial V} \right)}_{T}}-p \\
\end{align}
TeX (checked):
{\begin{aligned}&T{{\left({\frac {\partial S}{\partial T}}\right)}_{V}}dT+T{{\left({\frac {\partial S}{\partial V}}\right)}_{T}}dV={{\left({\frac {\partial U}{\partial T}}\right)}_{V}}dT+\left[{{\left({\frac {\partial U}{\partial V}}\right)}_{T}}+p\right]dV\\&\Rightarrow {{\left({\frac {\partial S}{\partial T}}\right)}_{V}}={\frac {1}{T}}{{\left({\frac {\partial U}{\partial T}}\right)}_{V}}\\&{{\left({\frac {\partial S}{\partial V}}\right)}_{T}}={\frac {1}{T}}{{\left({\frac {\partial U}{\partial V}}\right)}_{T}}+{\frac {p}{T}}\\&\Rightarrow {{\left({\frac {\partial U}{\partial V}}\right)}_{T}}=T{{\left({\frac {\partial S}{\partial V}}\right)}_{T}}-p\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (5.474 KB / 472 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>T</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></msub><mi>d</mi><mi>T</mi><mo>+</mo><mi>T</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mi>d</mi><mi>V</mi><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>U</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></msub><mi>d</mi><mi>T</mi><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>U</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>+</mo><mi>p</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><mi>d</mi><mi>V</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>U</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>U</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>U</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>=</mo><mi>T</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>−</mo><mi>p</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Thermodynamische Potenziale page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results