Jump to navigation
		Jump to search
		
General
Display information for equation id:math.2405.32 on revision:2405
* Page found: Quantenmechanische Gleichgewichtsverteilungen (eq math.2405.32)
(force rerendering)Occurrences on the following pages:
Hash: dace5f8332cdc26c89034ca8fdbe90d3
TeX (original user input):
\begin{align}
& tr\hat{X}:=\sum\limits_{\alpha }^{{}}{{}}\left\langle  \alpha  \right|\hat{X}\left| \alpha  \right\rangle =\sum\limits_{\alpha ,\beta ,\beta \acute{\ }}^{{}}{{}}\left\langle  \alpha   |  \beta  \right\rangle \left\langle  \beta  \right|\hat{X}\left| \beta \acute{\ } \right\rangle \left\langle  \beta \acute{\ }  |  \alpha  \right\rangle =\sum\limits_{\beta ,\beta }^{{}}{{}}\left\langle  \beta  \right|\hat{X}\left| \beta \acute{\ } \right\rangle \sum\limits_{\alpha }^{{}}{{}}\left\langle  \beta \acute{\ }  |  \alpha  \right\rangle \left\langle  \alpha   |  \beta  \right\rangle  \\
& \sum\limits_{\alpha }^{{}}{{}}\left\langle  \beta \acute{\ }  |  \alpha  \right\rangle \left\langle  \alpha   |  \beta  \right\rangle =\left\langle  \beta \acute{\ }  |  \beta  \right\rangle ={{\delta }_{\beta \acute{\ }\beta }} \\
& tr\hat{X}=\sum\limits_{\beta }^{{}}{{}}\left\langle  \beta  \right|\hat{X}\left| \beta  \right\rangle  \\
\end{align}
TeX (checked):
{\begin{aligned}&tr{\hat {X}}:=\sum \limits _{\alpha }^{}{}\left\langle \alpha \right|{\hat {X}}\left|\alpha \right\rangle =\sum \limits _{\alpha ,\beta ,\beta {\acute {\ }}}^{}{}\left\langle \alpha |\beta \right\rangle \left\langle \beta \right|{\hat {X}}\left|\beta {\acute {\ }}\right\rangle \left\langle \beta {\acute {\ }}|\alpha \right\rangle =\sum \limits _{\beta ,\beta }^{}{}\left\langle \beta \right|{\hat {X}}\left|\beta {\acute {\ }}\right\rangle \sum \limits _{\alpha }^{}{}\left\langle \beta {\acute {\ }}|\alpha \right\rangle \left\langle \alpha |\beta \right\rangle \\&\sum \limits _{\alpha }^{}{}\left\langle \beta {\acute {\ }}|\alpha \right\rangle \left\langle \alpha |\beta \right\rangle =\left\langle \beta {\acute {\ }}|\beta \right\rangle ={{\delta }_{\beta {\acute {\ }}\beta }}\\&tr{\hat {X}}=\sum \limits _{\beta }^{}{}\left\langle \beta \right|{\hat {X}}\left|\beta \right\rangle \\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (5.869 KB / 545 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>t</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>α</mi><mo>|</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mo>,</mo><mi>β</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>α</mi><mo>|</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>α</mi><mo>|</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>β</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>t</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Quantenmechanische Gleichgewichtsverteilungen page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results