Jump to navigation Jump to search

General

Display information for equation id:math.2405.32 on revision:2405

* Page found: Quantenmechanische Gleichgewichtsverteilungen (eq math.2405.32)

(force rerendering)

Occurrences on the following pages:

Hash: dace5f8332cdc26c89034ca8fdbe90d3

TeX (original user input):

\begin{align}
& tr\hat{X}:=\sum\limits_{\alpha }^{{}}{{}}\left\langle  \alpha  \right|\hat{X}\left| \alpha  \right\rangle =\sum\limits_{\alpha ,\beta ,\beta \acute{\ }}^{{}}{{}}\left\langle  \alpha   |  \beta  \right\rangle \left\langle  \beta  \right|\hat{X}\left| \beta \acute{\ } \right\rangle \left\langle  \beta \acute{\ }  |  \alpha  \right\rangle =\sum\limits_{\beta ,\beta }^{{}}{{}}\left\langle  \beta  \right|\hat{X}\left| \beta \acute{\ } \right\rangle \sum\limits_{\alpha }^{{}}{{}}\left\langle  \beta \acute{\ }  |  \alpha  \right\rangle \left\langle  \alpha   |  \beta  \right\rangle  \\
& \sum\limits_{\alpha }^{{}}{{}}\left\langle  \beta \acute{\ }  |  \alpha  \right\rangle \left\langle  \alpha   |  \beta  \right\rangle =\left\langle  \beta \acute{\ }  |  \beta  \right\rangle ={{\delta }_{\beta \acute{\ }\beta }} \\
& tr\hat{X}=\sum\limits_{\beta }^{{}}{{}}\left\langle  \beta  \right|\hat{X}\left| \beta  \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&tr{\hat {X}}:=\sum \limits _{\alpha }^{}{}\left\langle \alpha \right|{\hat {X}}\left|\alpha \right\rangle =\sum \limits _{\alpha ,\beta ,\beta {\acute {\ }}}^{}{}\left\langle \alpha |\beta \right\rangle \left\langle \beta \right|{\hat {X}}\left|\beta {\acute {\ }}\right\rangle \left\langle \beta {\acute {\ }}|\alpha \right\rangle =\sum \limits _{\beta ,\beta }^{}{}\left\langle \beta \right|{\hat {X}}\left|\beta {\acute {\ }}\right\rangle \sum \limits _{\alpha }^{}{}\left\langle \beta {\acute {\ }}|\alpha \right\rangle \left\langle \alpha |\beta \right\rangle \\&\sum \limits _{\alpha }^{}{}\left\langle \beta {\acute {\ }}|\alpha \right\rangle \left\langle \alpha |\beta \right\rangle =\left\langle \beta {\acute {\ }}|\beta \right\rangle ={{\delta }_{\beta {\acute {\ }}\beta }}\\&tr{\hat {X}}=\sum \limits _{\beta }^{}{}\left\langle \beta \right|{\hat {X}}\left|\beta \right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.869 KB / 545 B) :

trX^:=αα|X^|α=α,β,β´α|ββ|X^|β´β´|α=β,ββ|X^|β´αβ´|αα|βαβ´|αα|β=β´|β=δβ´βtrX^=ββ|X^|β
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>t</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>,</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><mo>|</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mo>,</mo><mi>&#x03B2;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><mo>|</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><mo>|</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>|</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>&#x03B2;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>t</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Quantenmechanische Gleichgewichtsverteilungen page

Identifiers

  • t
  • r
  • X^
  • α
  • α
  • X^
  • α
  • α
  • β
  • β
  • ´
  • α
  • β
  • β
  • X^
  • β
  • ´
  • β
  • ´
  • α
  • β
  • β
  • β
  • X^
  • β
  • ´
  • α
  • β
  • ´
  • α
  • α
  • β
  • α
  • β
  • ´
  • α
  • α
  • β
  • β
  • ´
  • β
  • δ
  • β
  • ´
  • β
  • t
  • r
  • X^
  • β
  • β
  • X^
  • β

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results