Jump to navigation Jump to search

General

Display information for equation id:math.2282.13 on revision:2282

* Page found: Beispiel des Großkanonischen Ensenbles (eq math.2282.13)

(force rerendering)

Occurrences on the following pages:

Hash: c994cfe0d1c816acdda0d17bd7ac10d4

TeX (original user input):

k{{\lambda }_{\nu }}={{\partial }_{\left\langle {{G}_{\nu }} \right\rangle }}S\Rightarrow k\beta ={{\left( \frac{\partial S}{\partial E} \right)}_{V,\bar{N}}};\quad k\sum\limits_{\nu }{{{\lambda }_{\nu }}{{M}_{\nu ,\alpha }}={{\partial }_{{{h}_{\alpha }}}}S}\Rightarrow {{\left( \frac{\partial S}{\partial N} \right)}_{E,\bar{N}}}=-k\beta \operatorname{Tr}\left( \frac{\partial H}{\partial V}R \right)

TeX (checked):

k{{\lambda }_{\nu }}={{\partial }_{\left\langle {{G}_{\nu }}\right\rangle }}S\Rightarrow k\beta ={{\left({\frac {\partial S}{\partial E}}\right)}_{V,{\bar {N}}}};\quad k\sum \limits _{\nu }{{{\lambda }_{\nu }}{{M}_{\nu ,\alpha }}={{\partial }_{{h}_{\alpha }}}S}\Rightarrow {{\left({\frac {\partial S}{\partial N}}\right)}_{E,{\bar {N}}}}=-k\beta \operatorname {Tr} \left({\frac {\partial H}{\partial V}}R\right)

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.81 KB / 497 B) :

kλν=GνSkβ=(SE)V,N¯;kνλνMν,α=hαS(SN)E,N¯=kβTr(HVR)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>k</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></msub><mi>S</mi><mo>&#x21D2;</mo><mi>k</mi><mi>&#x03B2;</mi><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>E</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>V</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msub><mo>;</mo><mspace width="1em"></mspace><mi>k</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi><mo>,</mo><mi>&#x03B1;</mi></mrow></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></msub><mi>S</mi></mrow><mo>&#x21D2;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>N</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>E</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mi>k</mi><mi>&#x03B2;</mi><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mi>R</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Beispiel des Großkanonischen Ensenbles page

Identifiers

  • k
  • λν
  • Gν
  • S
  • k
  • β
  • S
  • E
  • V
  • N¯
  • k
  • ν
  • λν
  • Mν,α
  • hα
  • S
  • S
  • N
  • E
  • N¯
  • k
  • β
  • H
  • V
  • R

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results