Jump to navigation Jump to search

General

Display information for equation id:math.2281.29 on revision:2281

* Page found: Beispiel des Großkanonischen Ensenbles (eq math.2281.29)

(force rerendering)

Occurrences on the following pages:

Hash: f0ef2454fa0ccb49cf2bdce7fa1b0df2

TeX (original user input):

\begin{align}
  & d{{S}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}=\frac{\partial {{S}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}}{\partial {{V}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}}d{{V}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}+\frac{\partial {{S}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}}{\partial {{{\bar{N}}}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}}d{{{\bar{N}}}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}+\frac{\partial {{S}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}}{\partial {{E}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}}}d{{E}_{{}^{1}\!\!\diagup\!\!{}_{2}\;}} \\
 & d{{S}_{1}}=-d{{S}_{2}} 
\end{align}

TeX (checked):

{\begin{aligned}&d{{S}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}={\frac {\partial {{S}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}}{\partial {{V}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}}}d{{V}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}+{\frac {\partial {{S}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}}{\partial {{\bar {N}}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}}}d{{\bar {N}}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}+{\frac {\partial {{S}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}}{\partial {{E}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}}}d{{E}_{{}^{1}\!\!\diagup \!\!{}_{2}\;}}\\&d{{S}_{1}}=-d{{S}_{2}}\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.876 KB / 461 B) :

dS12=S12V12dV12+S12N¯12dN¯12+S12E12dE12dS1=dS2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>d</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub></mrow></mrow></mfrac></mrow><mi>d</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub></mrow></mrow></mfrac></mrow><mi>d</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub></mrow></mrow></mfrac></mrow><mi>d</mi><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi/><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mi>&#x2571;</mi><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="0.278em"></mspace></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>d</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mi>d</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Beispiel des Großkanonischen Ensenbles page

Identifiers

  • d
  • S
  • S
  • V
  • d
  • V
  • S
  • N¯
  • d
  • N¯
  • S
  • E
  • d
  • E
  • d
  • S1
  • d
  • S2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results