Jump to navigation
Jump to search
General
Display information for equation id:math.2279.14 on revision:2279
* Page found: Beispiel des Großkanonischen Ensenbles (eq math.2279.14)
(force rerendering)Occurrences on the following pages:
Hash: 309757cdb4f3d380f7afb27db4f1ed3d
TeX (original user input):
\begin{align}
& k{{\lambda }_{\nu }}={{\partial }_{\left\langle {{G}_{\nu }} \right\rangle }}S\Rightarrow k\beta ={{\left( \frac{\partial S}{\partial E} \right)}_{V,\bar{N}\left( \left( \text{V},\text{N sind nicht anzufassen bei der partiellen Ableitung} \right) \right)}} \\
& k\sum\limits_{\nu }{{{\lambda }_{\nu }}{{M}_{\nu ,\alpha }}={{\partial }_{{{h}_{\alpha }}}}S}\Rightarrow {{\left( \frac{\partial S}{\partial N} \right)}_{E,\bar{N}}}=-k\beta \operatorname{Tr}\left( \frac{\partial H}{\partial V}R \right)\quad \left( {{\partial }_{V}}N\to 0 \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&k{{\lambda }_{\nu }}={{\partial }_{\left\langle {{G}_{\nu }}\right\rangle }}S\Rightarrow k\beta ={{\left({\frac {\partial S}{\partial E}}\right)}_{V,{\bar {N}}\left(\left({\text{V}},{\text{N sind nicht anzufassen bei der partiellen Ableitung}}\right)\right)}}\\&k\sum \limits _{\nu }{{{\lambda }_{\nu }}{{M}_{\nu ,\alpha }}={{\partial }_{{h}_{\alpha }}}S}\Rightarrow {{\left({\frac {\partial S}{\partial N}}\right)}_{E,{\bar {N}}}}=-k\beta \operatorname {Tr} \left({\frac {\partial H}{\partial V}}R\right)\quad \left({{\partial }_{V}}N\to 0\right)\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (3.723 KB / 672 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>k</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mo>=</mo><msub><mi>∂</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow></msub><mi>S</mi><mo>⇒</mo><mi>k</mi><mi>β</mi><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>E</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>V</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtext>V</mtext></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mtext>N sind nicht anzufassen bei der partiellen Ableitung</mtext></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>k</mi><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ν</mi><mo>,</mo><mi>α</mi></mrow></mrow></msub><mo>=</mo><msub><mi>∂</mi><mrow data-mjx-texclass="ORD"><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></msub><mi>S</mi></mrow><mo>⇒</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>N</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>E</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msub><mo>=</mo><mo>−</mo><mi>k</mi><mi>β</mi><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mi>R</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>∂</mi><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></msub><mi>N</mi><mo accent="false">→</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Beispiel des Großkanonischen Ensenbles page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results