Jump to navigation
		Jump to search
		
General
Display information for equation id:math.2270.96 on revision:2270
* Page found: Vorurteilsfreie Schätzung des statistischen Operators zu einem festen Zeitpunkt (eq math.2270.96)
(force rerendering)Occurrences on the following pages:
Hash: 9edc39ba546455818572ed237f6a8d87
TeX (original user input):
\begin{align}
  & S=k\sum\limits_{\nu }{{{\lambda }_{\nu }}\left\langle {{G}_{\nu }} \right\rangle }+k\ln Z \\
 & dS=k\sum\limits_{\nu }{\left( d{{\lambda }_{\nu }}\left\langle {{G}_{\nu }} \right\rangle +{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }} \right\rangle  \right)}+k\frac{dZ}{Z} \\
 & =k\underbrace{\sum\limits_{\nu }{{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }} \right\rangle }}_{\begin{smallmatrix}
 \text{Teil der} \\
 \text{Gibbsgleichung}
\end{smallmatrix}}+k\sum\limits_{\alpha }{\frac{1}{Z}\frac{\partial Z}{\partial {{h}_{\alpha }}}d{{h}_{\alpha }}} \\
 & k\sum\limits_{\alpha }{\frac{1}{Z}\frac{\partial Z}{\partial {{h}_{\alpha }}}d{{h}_{\alpha }}}=k\sum\limits_{\alpha }{\frac{1}{Z}\operatorname{Tr}\left( \frac{\partial }{\partial {{h}_{\alpha }}}{{\operatorname{e}}^{-\sum\limits_{\nu }{{{\lambda }_{\nu }}{{G}_{\nu }}}}} \right)d{{h}_{\alpha }}} 
\end{align}
TeX (checked):
{\begin{aligned}&S=k\sum \limits _{\nu }{{{\lambda }_{\nu }}\left\langle {{G}_{\nu }}\right\rangle }+k\ln Z\\&dS=k\sum \limits _{\nu }{\left(d{{\lambda }_{\nu }}\left\langle {{G}_{\nu }}\right\rangle +{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }}\right\rangle \right)}+k{\frac {dZ}{Z}}\\&=k\underbrace {\sum \limits _{\nu }{{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }}\right\rangle }} _{\begin{smallmatrix}{\text{Teil der}}\\{\text{Gibbsgleichung}}\end{smallmatrix}}+k\sum \limits _{\alpha }{{\frac {1}{Z}}{\frac {\partial Z}{\partial {{h}_{\alpha }}}}d{{h}_{\alpha }}}\\&k\sum \limits _{\alpha }{{\frac {1}{Z}}{\frac {\partial Z}{\partial {{h}_{\alpha }}}}d{{h}_{\alpha }}}=k\sum \limits _{\alpha }{{\frac {1}{Z}}\operatorname {Tr} \left({\frac {\partial }{\partial {{h}_{\alpha }}}}{{\operatorname {e} }^{-\sum \limits _{\nu }{{{\lambda }_{\nu }}{{G}_{\nu }}}}}\right)d{{h}_{\alpha }}}\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (5.704 KB / 673 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>S</mi><mo>=</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow><mo>+</mo><mi>k</mi><mi>ln</mi><mo>⁡</mo><mi>Z</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>d</mi><mi>S</mi><mo>=</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>+</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>k</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>Z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>k</mi><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow></mrow><mo>⏟</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Teil der</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Gibbsgleichung</mtext></mrow></mtd></mtr></mtable></mrow></mrow></munder><mo>+</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>Z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>d</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>k</mi><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>Z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>d</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow><mo>=</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></mrow></mfrac></mrow><msup><mi data-mjx-texclass="OP" mathvariant="normal">e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>ν</mi></mrow></msub></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Vorurteilsfreie Schätzung des statistischen Operators zu einem festen Zeitpunkt page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results