Jump to navigation Jump to search

General

Display information for equation id:math.2270.96 on revision:2270

* Page found: Vorurteilsfreie Schätzung des statistischen Operators zu einem festen Zeitpunkt (eq math.2270.96)

(force rerendering)

Occurrences on the following pages:

Hash: 9edc39ba546455818572ed237f6a8d87

TeX (original user input):

\begin{align}
  & S=k\sum\limits_{\nu }{{{\lambda }_{\nu }}\left\langle {{G}_{\nu }} \right\rangle }+k\ln Z \\
 & dS=k\sum\limits_{\nu }{\left( d{{\lambda }_{\nu }}\left\langle {{G}_{\nu }} \right\rangle +{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }} \right\rangle  \right)}+k\frac{dZ}{Z} \\
 & =k\underbrace{\sum\limits_{\nu }{{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }} \right\rangle }}_{\begin{smallmatrix}
 \text{Teil der} \\
 \text{Gibbsgleichung}
\end{smallmatrix}}+k\sum\limits_{\alpha }{\frac{1}{Z}\frac{\partial Z}{\partial {{h}_{\alpha }}}d{{h}_{\alpha }}} \\
 & k\sum\limits_{\alpha }{\frac{1}{Z}\frac{\partial Z}{\partial {{h}_{\alpha }}}d{{h}_{\alpha }}}=k\sum\limits_{\alpha }{\frac{1}{Z}\operatorname{Tr}\left( \frac{\partial }{\partial {{h}_{\alpha }}}{{\operatorname{e}}^{-\sum\limits_{\nu }{{{\lambda }_{\nu }}{{G}_{\nu }}}}} \right)d{{h}_{\alpha }}} 
\end{align}

TeX (checked):

{\begin{aligned}&S=k\sum \limits _{\nu }{{{\lambda }_{\nu }}\left\langle {{G}_{\nu }}\right\rangle }+k\ln Z\\&dS=k\sum \limits _{\nu }{\left(d{{\lambda }_{\nu }}\left\langle {{G}_{\nu }}\right\rangle +{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }}\right\rangle \right)}+k{\frac {dZ}{Z}}\\&=k\underbrace {\sum \limits _{\nu }{{{\lambda }_{\nu }}d\left\langle {{G}_{\nu }}\right\rangle }} _{\begin{smallmatrix}{\text{Teil der}}\\{\text{Gibbsgleichung}}\end{smallmatrix}}+k\sum \limits _{\alpha }{{\frac {1}{Z}}{\frac {\partial Z}{\partial {{h}_{\alpha }}}}d{{h}_{\alpha }}}\\&k\sum \limits _{\alpha }{{\frac {1}{Z}}{\frac {\partial Z}{\partial {{h}_{\alpha }}}}d{{h}_{\alpha }}}=k\sum \limits _{\alpha }{{\frac {1}{Z}}\operatorname {Tr} \left({\frac {\partial }{\partial {{h}_{\alpha }}}}{{\operatorname {e} }^{-\sum \limits _{\nu }{{{\lambda }_{\nu }}{{G}_{\nu }}}}}\right)d{{h}_{\alpha }}}\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.704 KB / 673 B) :

S=kνλνGν+klnZdS=kν(dλνGν+λνdGν)+kdZZ=kνλνdGνTeil derGibbsgleichung+kα1ZZhαdhαkα1ZZhαdhα=kα1ZTr(hαeνλνGν)dhα
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>S</mi><mo>=</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow><mo>+</mo><mi>k</mi><mi>ln</mi><mo>&#x2061;</mo><mi>Z</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>d</mi><mi>S</mi><mo>=</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>k</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>Z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>k</mi><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Teil der</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Gibbsgleichung</mtext></mrow></mtd></mtr></mtable></mrow></mrow></munder><mo>+</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>Z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>d</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>k</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>Z</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>d</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow><mo>=</mo><mi>k</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>Z</mi></mrow></mfrac></mrow><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></mrow></mfrac></mrow><msup><mi data-mjx-texclass="OP" mathvariant="normal">e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Vorurteilsfreie Schätzung des statistischen Operators zu einem festen Zeitpunkt page

Identifiers

  • S
  • k
  • ν
  • λν
  • Gν
  • k
  • Z
  • d
  • S
  • k
  • ν
  • d
  • λν
  • Gν
  • λν
  • d
  • Gν
  • k
  • d
  • Z
  • Z
  • k
  • ν
  • λν
  • d
  • Gν
  • k
  • α
  • Z
  • Z
  • hα
  • d
  • hα
  • k
  • α
  • Z
  • Z
  • hα
  • d
  • hα
  • k
  • α
  • Z
  • hα
  • ν
  • λν
  • Gν
  • d
  • hα

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results