Jump to navigation Jump to search

General

Display information for equation id:math.2263.56 on revision:2263

* Page found: Vorurteilsfreie Schätzung des statistischen Operators zu einem festen Zeitpunkt (eq math.2263.56)

(force rerendering)

Occurrences on the following pages:

Hash: f238960a0783b5971a0d7453329c0b78

TeX (original user input):

\begin{align}
  & \eta \left( R \right)=-k\operatorname{Tr}\left( R\ln R \right)=-k\operatorname{Tr}\left( -R\sum\limits_{\nu }^{{}}{{}}{{\lambda }_{\nu }}{{G}_{\nu }}-R\ln Z \right) \\
 & =-k\sum\limits_{\nu }^{{}}{{}}{{\lambda }_{\nu }}\left\langle {{G}_{\nu }} \right\rangle +k\ln Z \\
\end{align}

TeX (checked):

{\begin{aligned}&\eta \left(R\right)=-k\operatorname {Tr} \left(R\ln R\right)=-k\operatorname {Tr} \left(-R\sum \limits _{\nu }^{}{}{{\lambda }_{\nu }}{{G}_{\nu }}-R\ln Z\right)\\&=-k\sum \limits _{\nu }^{}{}{{\lambda }_{\nu }}\left\langle {{G}_{\nu }}\right\rangle +k\ln Z\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.02 KB / 443 B) :

η(R)=kTr(RlnR)=kTr(RνλνGνRlnZ)=kνλνGν+klnZ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03B7;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>R</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>k</mi><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>R</mi><mi>ln</mi><mo>&#x2061;</mo><mi>R</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>k</mi><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>R</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo>&#x2212;</mo><mi>R</mi><mi>ln</mi><mo>&#x2061;</mo><mi>Z</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mi>k</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>k</mi><mi>ln</mi><mo>&#x2061;</mo><mi>Z</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Vorurteilsfreie Schätzung des statistischen Operators zu einem festen Zeitpunkt page

Identifiers

  • η
  • R
  • k
  • R
  • R
  • k
  • R
  • ν
  • λν
  • Gν
  • R
  • Z
  • k
  • ν
  • λν
  • Gν
  • k
  • Z

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results