Jump to navigation Jump to search

General

Display information for equation id:math.2101.27 on revision:2101

* Page found: Magnetische Multipole (eq math.2101.27)

(force rerendering)

Occurrences on the following pages:

Hash: 8edd3950269d46e226a9e8dbb4b8fd98

TeX (original user input):

\Rightarrow \bar{m}=\frac{1}{2}\oint\limits_{L}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)=\frac{I}{2}\oint\limits_{L}{{}}\bar{r}\acute{\ }\times d\bar{s}\acute{\ }=I\int_{F}^{{}}{{}}d\bar{f}\acute{\ }=IF\bar{n}

TeX (checked):

\Rightarrow {\bar {m}}={\frac {1}{2}}\oint \limits _{L}{}{{d}^{3}}r{\acute {\ }}\left({\bar {r}}{\acute {\ }}\times {\bar {j}}({\bar {r}}{\acute {\ }})\right)={\frac {I}{2}}\oint \limits _{L}{}{\bar {r}}{\acute {\ }}\times d{\bar {s}}{\acute {\ }}=I\int _{F}^{}{}d{\bar {f}}{\acute {\ }}=IF{\bar {n}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.997 KB / 445 B) :

m¯=12Ld3r´(r¯´×j¯(r¯´))=I2Lr¯´×ds¯´=IFdf¯´=IFn¯
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>m</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow></munder><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>I</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>I</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>I</mi><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>n</mi><mo>¯</mo></mover></mrow></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Magnetische Multipole page

Identifiers

  • m¯
  • L
  • d
  • r
  • ´
  • r¯
  • ´
  • j¯
  • r¯
  • ´
  • I
  • L
  • r¯
  • ´
  • d
  • s¯
  • ´
  • I
  • F
  • f¯
  • ´
  • I
  • F
  • n¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results