Jump to navigation
Jump to search
General
Display information for equation id:math.2045.51 on revision:2045
* Page found: Stabilität und Langzeitverhalten (eq math.2045.51)
(force rerendering)Occurrences on the following pages:
Hash: 615f848fe8fb2dd52e79172d4ae54cbc
TeX (original user input):
\begin{align}
& {{V}_{t}}=\int_{{{U}_{t}}}^{{}}{{{d}^{2f}}x}=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\det D{{\Phi }_{t}}({{{\bar{x}}}_{0}})=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\left[ 1+(t-{{t}_{0}})\sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}+...} \right] \\
& \sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}={{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}} \\
& {{V}_{t}}={{V}_{{{t}_{0}}}}+(t-{{t}_{0}})\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}{{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}+O{{(t-{{t}_{0}})}^{2}} \\
& \frac{d{{V}_{t}}}{dt}=\begin{matrix}
\lim \\
t->{{t}_{0}} \\
\end{matrix}\frac{{{V}_{t}}-{{V}_{{{t}_{0}}}}}{(t-{{t}_{0}})}=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}{{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}=0 \\
& {{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}=0 \\
\end{align}
TeX (checked):
{\begin{aligned}&{{V}_{t}}=\int _{{U}_{t}}^{}{{{d}^{2f}}x}=\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}\det D{{\Phi }_{t}}({{\bar {x}}_{0}})=\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}\left[1+(t-{{t}_{0}})\sum \limits _{i=1}^{2f}{{\frac {\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}}+...}\right]\\&\sum \limits _{i=1}^{2f}{{\frac {\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}}={{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}}\\&{{V}_{t}}={{V}_{{t}_{0}}}+(t-{{t}_{0}})\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}{{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}+O{{(t-{{t}_{0}})}^{2}}\\&{\frac {d{{V}_{t}}}{dt}}={\begin{matrix}\lim \\t->{{t}_{0}}\\\end{matrix}}{\frac {{{V}_{t}}-{{V}_{{t}_{0}}}}{(t-{{t}_{0}})}}=\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}{{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}=0\\&{{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}=0\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (8.936 KB / 806 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><mi>x</mi></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mi>det</mi><mo>⁡</mo><mi>D</mi><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>+</mo><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>+</mo><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>+</mo><mi>O</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>t</mi><mo>−</mo><mo>></mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>−</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Stabilität und Langzeitverhalten page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results