Jump to navigation Jump to search

General

Display information for equation id:math.2033.29 on revision:2033

* Page found: Vektorfelder als dynamische Systeme (eq math.2033.29)

(force rerendering)

Occurrences on the following pages:

Hash: f674ba267821d62e15f65fc5908da2cc

TeX (original user input):

\begin{align}
  & \left( \begin{matrix}
   \delta {{{\dot{x}}}_{1}}  \\
   \delta {{{\dot{x}}}_{2}}  \\
\end{matrix} \right)={{\left( \begin{matrix}
   0 & \frac{1}{m{{l}^{2}}}  \\
   -mgl\cos {{x}_{1}} & 0  \\
\end{matrix} \right)}_{*}}\left( \begin{matrix}
   \delta {{x}_{1}}  \\
   \delta {{x}_{2}}  \\
\end{matrix} \right) \\
 & {{\left( \begin{matrix}
   0 & \frac{1}{m{{l}^{2}}}  \\
   -mgl\cos {{x}_{1}} & 0  \\
\end{matrix} \right)}_{*}}:=A \\
\end{align}

TeX (checked):

{\begin{aligned}&\left({\begin{matrix}\delta {{\dot {x}}_{1}}\\\delta {{\dot {x}}_{2}}\\\end{matrix}}\right)={{\left({\begin{matrix}0&{\frac {1}{m{{l}^{2}}}}\\-mgl\cos {{x}_{1}}&0\\\end{matrix}}\right)}_{*}}\left({\begin{matrix}\delta {{x}_{1}}\\\delta {{x}_{2}}\\\end{matrix}}\right)\\&{{\left({\begin{matrix}0&{\frac {1}{m{{l}^{2}}}}\\-mgl\cos {{x}_{1}}&0\\\end{matrix}}\right)}_{*}}:=A\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.074 KB / 475 B) :

(δx˙1δx˙2)=(01ml2mglcosx10)*(δx1δx2)(01ml2mglcosx10)*:=A
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>m</mi><mi>g</mi><mi>l</mi><mi>cos</mi><mo>&#x2061;</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>m</mi><mi>g</mi><mi>l</mi><mi>cos</mi><mo>&#x2061;</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mo>*</mo></mrow></msub><mi>:</mi><mo>=</mo><mi>A</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Vektorfelder als dynamische Systeme page

Identifiers

  • δ
  • x˙1
  • δ
  • x˙2
  • m
  • l
  • m
  • g
  • l
  • x1
  • δ
  • x1
  • δ
  • x2
  • m
  • l
  • m
  • g
  • l
  • x1
  • A

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results