Jump to navigation Jump to search

General

Display information for equation id:math.2010.69 on revision:2010

* Page found: Kinetische Energie und Trägheitstensor (eq math.2010.69)

(force rerendering)

Occurrences on the following pages:

Hash: 02cb5092c87aff684b5ecf67baf2d907

TeX (original user input):

\begin{align}
  & {{J}_{mn}}\acute{\ }=\int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\left[ \left( \sum\limits_{t}{{{\left( {{x}_{t}}+{{a}_{t}} \right)}^{2}}} \right){{\delta }_{mn}}-\left( {{x}_{m}}+{{a}_{m}} \right)\left( {{x}_{n}}+{{a}_{n}} \right) \right] \\
 & {{J}_{mn}}\acute{\ }=\int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\left[ \left( \sum\limits_{t}{\left[ {{\left( {{x}_{t}} \right)}^{2}}+2\left( {{a}_{t}}{{x}_{t}} \right)+{{a}_{t}}^{2} \right]} \right){{\delta }_{mn}}-{{x}_{m}}{{x}_{n}}-{{x}_{m}}{{a}_{n}}-{{x}_{n}}{{a}_{m}}-{{a}_{m}}{{a}_{n}} \right] \\
 & \int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\sum\limits_{t}{\left( {{a}_{t}}{{x}_{t}} \right)}=\int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\left( {{x}_{m}}{{a}_{n}}+{{x}_{n}}{{a}_{m}} \right)=0\quad wegen\ \int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\bar{x}=0 \\
\end{align}

TeX (checked):

{\begin{aligned}&{{J}_{mn}}{\acute {\ }}=\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\left[\left(\sum \limits _{t}{{\left({{x}_{t}}+{{a}_{t}}\right)}^{2}}\right){{\delta }_{mn}}-\left({{x}_{m}}+{{a}_{m}}\right)\left({{x}_{n}}+{{a}_{n}}\right)\right]\\&{{J}_{mn}}{\acute {\ }}=\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\left[\left(\sum \limits _{t}{\left[{{\left({{x}_{t}}\right)}^{2}}+2\left({{a}_{t}}{{x}_{t}}\right)+{{a}_{t}}^{2}\right]}\right){{\delta }_{mn}}-{{x}_{m}}{{x}_{n}}-{{x}_{m}}{{a}_{n}}-{{x}_{n}}{{a}_{m}}-{{a}_{m}}{{a}_{n}}\right]\\&\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\sum \limits _{t}{\left({{a}_{t}}{{x}_{t}}\right)}=\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\left({{x}_{m}}{{a}_{n}}+{{x}_{n}}{{a}_{m}}\right)=0\quad wegen\ \int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}}){\bar {x}}=0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (7.479 KB / 708 B) :

Jmn´=d3xρ(x¯)[(t(xt+at)2)δmn(xm+am)(xn+an)]Jmn´=d3xρ(x¯)[(t[(xt)2+2(atxt)+at2])δmnxmxnxmanxnamaman]d3xρ(x¯)t(atxt)=d3xρ(x¯)(xman+xnam)=0wegend3xρ(x¯)x¯=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munder><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo>+</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mo>&#x2212;</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>w</mi><mi>e</mi><mi>g</mi><mi>e</mi><mi>n</mi><mspace width="0.5em"/><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kinetische Energie und Trägheitstensor page

Identifiers

  • Jmn
  • ´
  • x
  • ρ
  • x¯
  • t
  • xt
  • at
  • δmn
  • xm
  • am
  • xn
  • an
  • Jmn
  • ´
  • x
  • ρ
  • x¯
  • t
  • xt
  • at
  • xt
  • at
  • δmn
  • xm
  • xn
  • xm
  • an
  • xn
  • am
  • am
  • an
  • x
  • ρ
  • x¯
  • t
  • at
  • xt
  • x
  • ρ
  • x¯
  • xm
  • an
  • xn
  • am
  • w
  • e
  • g
  • e
  • n
  • x
  • ρ
  • x¯
  • x¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results