Jump to navigation
Jump to search
General
Display information for equation id:math.2010.69 on revision:2010
* Page found: Kinetische Energie und Trägheitstensor (eq math.2010.69)
(force rerendering)Occurrences on the following pages:
Hash: 02cb5092c87aff684b5ecf67baf2d907
TeX (original user input):
\begin{align}
& {{J}_{mn}}\acute{\ }=\int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\left[ \left( \sum\limits_{t}{{{\left( {{x}_{t}}+{{a}_{t}} \right)}^{2}}} \right){{\delta }_{mn}}-\left( {{x}_{m}}+{{a}_{m}} \right)\left( {{x}_{n}}+{{a}_{n}} \right) \right] \\
& {{J}_{mn}}\acute{\ }=\int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\left[ \left( \sum\limits_{t}{\left[ {{\left( {{x}_{t}} \right)}^{2}}+2\left( {{a}_{t}}{{x}_{t}} \right)+{{a}_{t}}^{2} \right]} \right){{\delta }_{mn}}-{{x}_{m}}{{x}_{n}}-{{x}_{m}}{{a}_{n}}-{{x}_{n}}{{a}_{m}}-{{a}_{m}}{{a}_{n}} \right] \\
& \int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\sum\limits_{t}{\left( {{a}_{t}}{{x}_{t}} \right)}=\int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\left( {{x}_{m}}{{a}_{n}}+{{x}_{n}}{{a}_{m}} \right)=0\quad wegen\ \int_{{}}^{{}}{{{d}^{3}}x}\rho (\bar{x})\bar{x}=0 \\
\end{align}
TeX (checked):
{\begin{aligned}&{{J}_{mn}}{\acute {\ }}=\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\left[\left(\sum \limits _{t}{{\left({{x}_{t}}+{{a}_{t}}\right)}^{2}}\right){{\delta }_{mn}}-\left({{x}_{m}}+{{a}_{m}}\right)\left({{x}_{n}}+{{a}_{n}}\right)\right]\\&{{J}_{mn}}{\acute {\ }}=\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\left[\left(\sum \limits _{t}{\left[{{\left({{x}_{t}}\right)}^{2}}+2\left({{a}_{t}}{{x}_{t}}\right)+{{a}_{t}}^{2}\right]}\right){{\delta }_{mn}}-{{x}_{m}}{{x}_{n}}-{{x}_{m}}{{a}_{n}}-{{x}_{n}}{{a}_{m}}-{{a}_{m}}{{a}_{n}}\right]\\&\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\sum \limits _{t}{\left({{a}_{t}}{{x}_{t}}\right)}=\int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}})\left({{x}_{m}}{{a}_{n}}+{{x}_{n}}{{a}_{m}}\right)=0\quad wegen\ \int _{}^{}{{{d}^{3}}x}\rho ({\bar {x}}){\bar {x}}=0\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (7.479 KB / 708 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>ρ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munder><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo>+</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>ρ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mo>−</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>−</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>−</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo>−</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>ρ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>ρ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>w</mi><mi>e</mi><mi>g</mi><mi>e</mi><mi>n</mi><mspace width="0.5em"/><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi></mrow><mi>ρ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Kinetische Energie und Trägheitstensor page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results