Jump to navigation
		Jump to search
		
General
Display information for equation id:math.1961.5 on revision:1961
* Page found: Symplektische Struktur des Phasenraums (eq math.1961.5)
(force rerendering)Occurrences on the following pages:
Hash: 6bad951ac2f619cf34cb1048c099d0c3
TeX (original user input):
\begin{align}
  & \bar{x}:=\left( \begin{matrix}
   {{q}_{1}}  \\
   ...  \\
   {{q}_{f}}  \\
   {{p}_{1}}  \\
   ...  \\
   {{p}_{f}}  \\
\end{matrix} \right) \\ 
 & {{{\bar{H}}}_{x}}:=\left( \begin{matrix}
   \frac{\partial H}{\partial {{q}_{1}}}  \\
   ...  \\
   \frac{\partial H}{\partial {{q}_{f}}}  \\
   \frac{\partial H}{\partial {{p}_{1}}}  \\
   ...  \\
   \frac{\partial H}{\partial {{p}_{f}}}  \\
\end{matrix} \right)\quad \quad J:=\left( \begin{matrix}
   0 & {{1}_{f}}  \\
   -{{1}_{f}} & 0  \\
\end{matrix} \right) \\ 
\end{align}
TeX (checked):
{\begin{aligned}&{\bar {x}}:=\left({\begin{matrix}{{q}_{1}}\\...\\{{q}_{f}}\\{{p}_{1}}\\...\\{{p}_{f}}\\\end{matrix}}\right)\\&{{\bar {H}}_{x}}:=\left({\begin{matrix}{\frac {\partial H}{\partial {{q}_{1}}}}\\...\\{\frac {\partial H}{\partial {{q}_{f}}}}\\{\frac {\partial H}{\partial {{p}_{1}}}}\\...\\{\frac {\partial H}{\partial {{p}_{f}}}}\\\end{matrix}}\right)\quad \quad J:=\left({\begin{matrix}0&{{1}_{f}}\\-{{1}_{f}}&0\\\end{matrix}}\right)\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (3.643 KB / 500 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mspace width="1em"></mspace><mi>J</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><msub><mn>1</mn><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>−</mo><msub><mn>1</mn><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Symplektische Struktur des Phasenraums page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results