Jump to navigation Jump to search

General

Display information for equation id:math.1961.13 on revision:1961

* Page found: Symplektische Struktur des Phasenraums (eq math.1961.13)

(force rerendering)

Occurrences on the following pages:

Hash: 4ff69f22e143d5b37020fa0fd7898257

TeX (original user input):

\begin{align}
  & {{M}_{3}}(\bar{p},\bar{Q},t)={{M}_{1}}(\bar{q},\bar{Q},t)-\sum\limits_{j=1}^{f}{{}}\frac{\partial {{M}_{1}}}{\partial {{q}_{j}}}{{q}_{j}} \\ 
 & \Rightarrow {{q}_{j}}=\frac{\partial {{M}_{3}}}{\partial {{p}_{j}}} \\ 
 & {{P}_{j}}=-\frac{\partial {{M}_{3}}}{\partial {{Q}_{j}}} \\ 
 & \Rightarrow \frac{\partial {{q}_{j}}}{\partial {{Q}_{k}}}=-\frac{{{\partial }^{2}}{{M}_{3}}}{\partial {{Q}_{k}}\partial {{p}_{j}}}=\frac{\partial {{P}_{k}}}{\partial {{p}_{j}}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{M}_{3}}({\bar {p}},{\bar {Q}},t)={{M}_{1}}({\bar {q}},{\bar {Q}},t)-\sum \limits _{j=1}^{f}{}{\frac {\partial {{M}_{1}}}{\partial {{q}_{j}}}}{{q}_{j}}\\&\Rightarrow {{q}_{j}}={\frac {\partial {{M}_{3}}}{\partial {{p}_{j}}}}\\&{{P}_{j}}=-{\frac {\partial {{M}_{3}}}{\partial {{Q}_{j}}}}\\&\Rightarrow {\frac {\partial {{q}_{j}}}{\partial {{Q}_{k}}}}=-{\frac {{{\partial }^{2}}{{M}_{3}}}{\partial {{Q}_{k}}\partial {{p}_{j}}}}={\frac {\partial {{P}_{k}}}{\partial {{p}_{j}}}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.161 KB / 508 B) :

M3(p¯,Q¯,t)=M1(q¯,Q¯,t)j=1fM1qjqjqj=M3pjPj=M3QjqjQk=2M3Qkpj=Pkpj
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi>&#x2202;</mi><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symplektische Struktur des Phasenraums page

Identifiers

  • M3
  • p¯
  • Q¯
  • t
  • M1
  • q¯
  • Q¯
  • t
  • j
  • f
  • M1
  • qj
  • qj
  • qj
  • M3
  • pj
  • Pj
  • M3
  • Qj
  • qj
  • Qk
  • M3
  • Qk
  • pj
  • Pk
  • pj

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results