Jump to navigation Jump to search

General

Display information for equation id:math.1918.73 on revision:1918

* Page found: Das Zweikörperproblem (eq math.1918.73)

(force rerendering)

Occurrences on the following pages:

Hash: 0bbd496e7247663e5d709a5a068a102b

TeX (original user input):

\begin{align}
  & -{{\left( \frac{1}{r{{\acute{\ }}^{{}}}}-\frac{mk}{{{l}^{2}}} \right)}^{2}}+\frac{{{m}^{2}}{{k}^{2}}}{{{l}^{4}}}+\frac{2mE}{{{l}^{2}}}:=D\left[ 1-\frac{1}{D}{{\left( \frac{1}{r{{\acute{\ }}^{{}}}}-\frac{mk}{{{l}^{2}}} \right)}^{2}} \right] \\
 & D:=\frac{2m}{{{l}^{2}}}\left( \frac{m{{k}^{2}}}{2{{l}^{2}}}+E \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&-{{\left({\frac {1}{r{{\acute {\ }}^{}}}}-{\frac {mk}{{l}^{2}}}\right)}^{2}}+{\frac {{{m}^{2}}{{k}^{2}}}{{l}^{4}}}+{\frac {2mE}{{l}^{2}}}:=D\left[1-{\frac {1}{D}}{{\left({\frac {1}{r{{\acute {\ }}^{}}}}-{\frac {mk}{{l}^{2}}}\right)}^{2}}\right]\\&D:={\frac {2m}{{l}^{2}}}\left({\frac {m{{k}^{2}}}{2{{l}^{2}}}}+E\right)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.808 KB / 523 B) :

(1r´mkl2)2+m2k2l4+2mEl2:=D[11D(1r´mkl2)2]D:=2ml2(mk22l2+E)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><mi>E</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi>:</mi><mo>=</mo><mi>D</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>D</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mi>E</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Zweikörperproblem page

Identifiers

  • r
  • ´
  • m
  • k
  • l
  • m
  • k
  • l
  • m
  • E
  • l
  • D
  • D
  • r
  • ´
  • m
  • k
  • l
  • D
  • m
  • l
  • m
  • k
  • l
  • E

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results