Jump to navigation Jump to search

General

Display information for equation id:math.1826.75 on revision:1826

* Page found: Das Wasserstoffatom (relativistsich) (eq math.1826.75)

(force rerendering)

Occurrences on the following pages:

Hash: 0da263c40e25ca1603f482ab4f132e5b

TeX (original user input):

\begin{align}
& E={{m}_{0}}{{c}^{2}}\left[ 1-\left( \frac{{{\gamma }^{2}}}{2{{n}^{2}}} \right)-\left( \frac{{{\gamma }^{4}}}{2{{n}^{3}}} \right)\left( \frac{1}{j+\frac{1}{2}}-\frac{3}{4n} \right)+O\left( {{\gamma }^{6}} \right) \right] \\
& n=1,2,3 \\
& j=\frac{1}{2},\frac{3}{2},...,n-\frac{1}{2},wegen\ n=n\acute{\ }+j+\frac{1}{2} \\
& j=l\pm s \\
\end{align}

TeX (checked):

{\begin{aligned}&E={{m}_{0}}{{c}^{2}}\left[1-\left({\frac {{\gamma }^{2}}{2{{n}^{2}}}}\right)-\left({\frac {{\gamma }^{4}}{2{{n}^{3}}}}\right)\left({\frac {1}{j+{\frac {1}{2}}}}-{\frac {3}{4n}}\right)+O\left({{\gamma }^{6}}\right)\right]\\&n=1,2,3\\&j={\frac {1}{2}},{\frac {3}{2}},...,n-{\frac {1}{2}},wegen\ n=n{\acute {\ }}+j+{\frac {1}{2}}\\&j=l\pm s\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.622 KB / 581 B) :

E=m0c2[1(γ22n2)(γ42n3)(1j+1234n)+O(γ6)]n=1,2,3j=12,32,...,n12,wegenn=n´+j+12j=l±s
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>E</mi><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>n</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>O</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>6</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>j</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>n</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>,</mo><mi>w</mi><mi>e</mi><mi>g</mi><mi>e</mi><mi>n</mi><mspace width="0.5em"/><mi>n</mi><mo>=</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>+</mo><mi>j</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>j</mi><mo>=</mo><mi>l</mi><mo>&#x00B1;</mo><mi>s</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Wasserstoffatom (relativistsich) page

Identifiers

  • E
  • m0
  • c
  • γ
  • n
  • γ
  • n
  • j
  • n
  • O
  • γ
  • n
  • j
  • n
  • w
  • e
  • g
  • e
  • n
  • n
  • n
  • ´
  • j
  • j
  • l
  • s

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results