Jump to navigation Jump to search

General

Display information for equation id:math.1825.47 on revision:1825

* Page found: Das Wasserstoffatom (relativistsich) (eq math.1825.47)

(force rerendering)

Occurrences on the following pages:

Hash: 4ead487022c00ac38d7305fc9541ecce

TeX (original user input):

\begin{align}

& f(\rho )=\sum\limits_{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k}}}\Rightarrow f\acute{\ }(\rho )=\sum\limits_{k=1}^{\infty }{k{{f}_{k}}{{\rho }^{k-1}}}=\sum\limits_{k=0}^{\infty }{(k+1){{f}_{k+1}}{{\rho }^{k}}} \\

& g(\rho )=\sum\limits_{k=0}^{\infty }{{{g}_{k}}{{\rho }^{k}}}\Rightarrow g\acute{\ }(\rho )=\sum\limits_{k=1}^{\infty }{k{{g}_{k}}{{\rho }^{k-1}}} \\

& \frac{f(\rho )}{\rho }=\sum\limits_{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k-1}}=}\frac{{{f}_{0}}}{\rho }+\sum\limits_{k=0}^{\infty }{{{f}_{k+1}}{{\rho }^{k}}} \\

\end{align}

TeX (checked):

{\begin{aligned}&f(\rho )=\sum \limits _{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k}}}\Rightarrow f{\acute {\ }}(\rho )=\sum \limits _{k=1}^{\infty }{k{{f}_{k}}{{\rho }^{k-1}}}=\sum \limits _{k=0}^{\infty }{(k+1){{f}_{k+1}}{{\rho }^{k}}}\\&g(\rho )=\sum \limits _{k=0}^{\infty }{{{g}_{k}}{{\rho }^{k}}}\Rightarrow g{\acute {\ }}(\rho )=\sum \limits _{k=1}^{\infty }{k{{g}_{k}}{{\rho }^{k-1}}}\\&{\frac {f(\rho )}{\rho }}=\sum \limits _{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k-1}}=}{\frac {{f}_{0}}{\rho }}+\sum \limits _{k=0}^{\infty }{{{f}_{k+1}}{{\rho }^{k}}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.059 KB / 566 B) :

f(ρ)=k=0fkρkf´(ρ)=k=1kfkρk1=k=0(k+1)fk+1ρkg(ρ)=k=0gkρkg´(ρ)=k=1kgkρk1f(ρ)ρ=k=0fkρk1=f0ρ+k=0fk+1ρk
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow><mo>&#x21D2;</mo><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>k</mi><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>g</mi><mo stretchy="false">(</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow><mo>&#x21D2;</mo><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>k</mi><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mo>=</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></mfrac></mrow><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Wasserstoffatom (relativistsich) page

Identifiers

  • f
  • ρ
  • k
  • fk
  • ρ
  • k
  • f
  • ´
  • ρ
  • k
  • k
  • fk
  • ρ
  • k
  • k
  • k
  • fk+1
  • ρ
  • k
  • g
  • ρ
  • k
  • gk
  • ρ
  • k
  • g
  • ´
  • ρ
  • k
  • k
  • gk
  • ρ
  • k
  • f
  • ρ
  • ρ
  • k
  • fk
  • ρ
  • k
  • f0
  • ρ
  • k
  • fk+1
  • ρ
  • k

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results