Jump to navigation
Jump to search
General
Display information for equation id:math.1825.47 on revision:1825
* Page found: Das Wasserstoffatom (relativistsich) (eq math.1825.47)
(force rerendering)Occurrences on the following pages:
Hash: 4ead487022c00ac38d7305fc9541ecce
TeX (original user input):
\begin{align}
& f(\rho )=\sum\limits_{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k}}}\Rightarrow f\acute{\ }(\rho )=\sum\limits_{k=1}^{\infty }{k{{f}_{k}}{{\rho }^{k-1}}}=\sum\limits_{k=0}^{\infty }{(k+1){{f}_{k+1}}{{\rho }^{k}}} \\
& g(\rho )=\sum\limits_{k=0}^{\infty }{{{g}_{k}}{{\rho }^{k}}}\Rightarrow g\acute{\ }(\rho )=\sum\limits_{k=1}^{\infty }{k{{g}_{k}}{{\rho }^{k-1}}} \\
& \frac{f(\rho )}{\rho }=\sum\limits_{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k-1}}=}\frac{{{f}_{0}}}{\rho }+\sum\limits_{k=0}^{\infty }{{{f}_{k+1}}{{\rho }^{k}}} \\
\end{align}
TeX (checked):
{\begin{aligned}&f(\rho )=\sum \limits _{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k}}}\Rightarrow f{\acute {\ }}(\rho )=\sum \limits _{k=1}^{\infty }{k{{f}_{k}}{{\rho }^{k-1}}}=\sum \limits _{k=0}^{\infty }{(k+1){{f}_{k+1}}{{\rho }^{k}}}\\&g(\rho )=\sum \limits _{k=0}^{\infty }{{{g}_{k}}{{\rho }^{k}}}\Rightarrow g{\acute {\ }}(\rho )=\sum \limits _{k=1}^{\infty }{k{{g}_{k}}{{\rho }^{k-1}}}\\&{\frac {f(\rho )}{\rho }}=\sum \limits _{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k-1}}=}{\frac {{f}_{0}}{\rho }}+\sum \limits _{k=0}^{\infty }{{{f}_{k+1}}{{\rho }^{k}}}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (5.059 KB / 566 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>ρ</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow><mo>⇒</mo><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>k</mi><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>ρ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mrow></msup></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><msup><mi>ρ</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>g</mi><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>ρ</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow><mo>⇒</mo><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>k</mi><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>ρ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>f</mi><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>ρ</mi></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>ρ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mrow></msup><mo>=</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>ρ</mi></mrow></mfrac></mrow><mo>+</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><msup><mi>ρ</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das Wasserstoffatom (relativistsich) page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results